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Thermodynamics of Microemulsions |

Willem K. Kegel, }. Theo G. Overbeek, and Henk N. W. Lekkerkerker
Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Research Institute, Utrecht
University, Utrecht, The Netherlands

I. INTRODUCTION

Microemulsions are thermodynamically stable mixtures of oil and water. The stability is
due to the presence of fairly large amounts (several percent) of surfactants.
Microemulsions are often transparent, but scattering of light, X-rays, etc. indicate that
oil and water are not molecularly dispersed but are rather more coarsely mixed. By
“coarse” in this case we mean that oil and water are present in domains of a few to over
a hundred nanometers in size. Consequently, microemulsions contain huge oil/water
interfacial areas, and to allow stability the interfacial tension must be quite low, usually
& 1 mN/m. In that case the entropy of mixing, although small on account of the
coarseness of the mixture, may be large enough to compensate for the positive interfacial
free energy and to give the microemulsion a free energy lower than that of the unmixed
components.

Microemulsions can have various textures, such as oil droplets in water, water droplets
in oil, (random) bicontinuous mixtures, ordered droplets, or lamellar mixtures with a wide
range of phase equilibria among them and with excess oil and/or water phases. This great
variety is governed by variations in the composition of the whole system and in the structure
of the interfacial layers.

Qualitatively the thermodynamics of microemulsions is well understood as the
interplay between a small interfacial free energy and a small entropy of mixing.
However, because of these contributions being small, other small effects, such as
the influence of curvature on the interfacial tension and the influence of
fluctuations, become important, and quantitative understanding still leaves a lot
to be desired.

In Sec. II we discuss the mechanism by which the interfacial tension may become
ultralow. After that, in Sec. III we mention curvature effects of the oil/water interface.
Subsequently, a number of models for thermodynamic calculations are described
(Sec. IV). In Secs. V-VII we discuss droplet-type microemulsions in some detail
SectionVdescribes a thermodynamic formalism that incorporates the interfacial free energy
(as influenced by the curvature) and the free energy of mixing of droplets and continuous
medium and ultimately leads to equations for the size distribution of microemulsion
droplets. This size distribution is important because measurable properties can be calculated
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14 Kegel et al.

once it is known. In Sec. VI we discuss the quantities that determine the size distribution of
the droplets, and in Sec. VII the theory of droplet-type microemulsions is compared with
experiments. Finally, in Sec. VIII we discuss the main results of the theory of droplet-type
microemulsions and present a short discussion of bicontinuous microemulsions and
lamellar structures.

Il. ULTRALOW INTERFACIAL TENSION

A. Interfacial Tension and Micelle Formation

The O/W interfacial tension (O = oil, W = water or aqueous solution) is lowered by the
addition and adsorption of surfactants. The higher the concentration of the surfactant,
the lower the interfacial tension, until at the cmc (critical micelle concentration)
micelles are formed. Micelles are aggregates of large numbers (often 50 or more) of
surfactant molecules, structured in such a way that, for a water-soluble surfactant, the
hydrophobic parts of the surfactant are in the interior of the micelle, and the hydrophilic
parts form its skin. As a simple consequence of mass action, nearly all surfactant added
beyond the cme forms micelles with hardly any increase in the concentration of the single
molecules, and thus of their activity, which governs the adsorption and therefore the
interfacial tension.

A great variety of surfactants have been used in microemulsion formation. These
include common soaps, other anionic and cationic surfactants, nonionic surfactants of
the polyethylene oxide type, and other structures. The hydrophobic part contains one or
two linear or branched hydrocarbon chains containing about 8-18 carbon atoms. Quite
often microemulsions require, in addition to oil, water, and surfactant, the presence of
simple electrolytes, alcohols, and/or other weakly surface-active substances.

B. lonic Surfactants

In many cases the interfacial tension is not yet ultralow when the cmc is reached. Schulman
and collaborators [1-3], who first raised scientific interest in microemulsions, realized that
the addition of a cosurfactant (e.g., a medium-sized aliphatic alcohol or amine) to an ionic
surfactant (in their case soap) solved this problem by lowering the interfacial tension to
virtually zero.

A good example is found in the interfacial tension between aqueous solutions of SDS
(sodium dodecyl sulfate) containing 0.30 M NaCl and pentanol solutions in cyclohexane
containing 0-20% pentanol [4,5] as shown in Fig. 1.

We draw attention to two aspects of these curves. At 5% pentanol the interfacial
tension already reaches very low values (<0.05 mN/m), and at 20% pentanol the curve
seems to dip under the y = 0 level. Furthermore, in the lower parts of the curves the points
nearly follow a straight line, indicating, according to the Gibbs adsorption equation,
Eq. (1), that the adsorption is constant (“saturation adsorption”).

ay
T a1 - - Sa 1
(kTa lncsa> I M

In this equation v is the interfacial tension of the (macroscopic) oil/water interface, ¢y, is the
concentration of SDS in the aqueous phase (in molecules per unit volume), Iy, its adsorption
(in molecules per unit area), and k and 7 have their usual meaning.
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Figure 1 Interfacial tension y as a function of the surfactant concentration ¢y, (in g/g) between
aqueous solutions of sodium dodecy! sulfate (SDS) containing 0.3 M NaCl and solutions of 0-20 wi%
n-pentanol in cyclohexane. Without pentanol the cmc is found at about 0.0004 M SDS, and above the
cme, y = 2.42 mN/m. Pentanol decreases the cme and the interfacial tension above the cmc until,
at 5% pentanol, y above the cmc becomes as low as 0.036 mN/m. The area per molecule of SDS
at saturation adsorption increases from 0.52 nm? in the absence of pentanol to about 0.9 nm? at
20% pentanol. Obviously the pentanol, which is adsorbed to the extent of two to three molecules
per molecule of SDS, drives some of the SDS out of the interface. The experiments were carried
out at 25°C.

C. Nonionic Surfactants

With nonionic surfactants of the PEO [poly(ethylene oxide)] type, the temperature is an
important variable. They are water-soluble at lower temperatures and oil-soluble at high
temperatures. In the narrow temperature range where the solubility changes, called PIT
(phase inversion temperature [6]), the interfacial tension becomes extremely low, as sketched
in Fig. 2. Below the PIT an O/W (oil-in-water) microemulsion is formed, above it a W/O
(water-in-oil) microemulsion, with a continuous transition between them, possibly a
bicontinuous mixture of oil and water, which at low surfactant concentrations may show
a three-phase equilibrium with excess oil and water. Such equilibria are designated
Winsor [ (O/W+0), Winsor II (W/O4+W), and Winsor III [(bicontinuous?
O+ W)+ O+ W] after P. A. Winsor [7-9], who studied phase equilibria in (mostly ionic)
microemulsion systems extensively and at an early date.

D. lonic Surfactants with Two Hydrophobic Chains

It should be mentioned here that ionic surfactants with two hydrocarbon chains do not need
a cosurfactant to enable them to form microemulsions. Aerosol OT (AOT), which is sodium
diethylhexylsulfosuccinate, has been known and used for a long time. In 1983 Angel et al. [10]
remarked that substituted ammonium salts with two long chains, e.g.,
didodecyldimethylammonium bromide, would also form microemulsions without the use
of a cosurfactant.
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Figure 2 () Schematic diagram of volume fractions in a system of equal volumes of oil and water
with, e.g., 5% of a PEO-type nonionic surfactant versus temperature. (b) Interfacial tensions in
the same system. The line corresponding to the interfacial tension of the oil/microemulsion interface
and the one corresponding to the microemulsion/water interface, are indicated. (After Ref. 6)

E. Negative Interfacial Tension and Spontaneous Emulsification

The 20% pentanol line in Fig. 1 clearly suggests that the interfacial tension becomes
negative if the surfactant concentration is increased above the concentration where
y = 0. This, however, would lead to an unstable situation, since a negative interfacial
tension leads to a spontaneous increase in the area of the interface. When this happens,
more surfactant will be adsorbed, thus lowering the surfactant concentration until y is
at least slightly positive. The large interfacial area thus formed may divide itself into a large
number of closed shells around small droplets of either o1l in water or water in oil and further
decrease the free energy of the system as a direct consequence of the relatively large entropy
of mixing of droplets and continuous medium. These considerations may serve as an expla-
nation for the spontaneous formation of microemulsions that is often observed. The essential
feature is that the composition of the mixture reaches y = 0 before micelles are formed. To
make this argument more quantitative we remark that the y = 0 situation is often found
at a surfactant concentration on the order of 0.1-1 wt%. Thus most of the surfactant in
the mixtures will serve to make an interfacial area on the order of 1 nm? per surfactant
molecule (see Sec. VI for a discussion of the order of magnitude of this molecular area),
that is, on the order of 2000 m® per gram of surfactant, which is enough to stabilize
10 g of water or oil droplets with a radius of about 15 nm. So, although the surfactant is
evidently the most important additive in the mixture and its amount determines the total
interfacial area, it does not determine the structure of the microemulsion, not
even whether it is O/W or W/O. That depends on curvature effects as discussed in the next
section.
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Hl. HOW TO AFFECT THE CURVATURE OF THE INTERFACE AND THE TYPE
OF MICROEMULSION EQUILIBRIUM

Not only do surfactants and cosurfactants lower the interfacial tension, but also their mol-
ecular structures affect the curvature of the interface as shown schematically in Fig. 3.
The hydrocarbon chains are rather closely packed (about 0.25 nm® per chain); they
repel one another sideways and as a result have a tendency to bend the interface around
the water side. The counterions of the ionic headgroups also repel one another sideways
and thus tend to curve the interface around the oil side. The bulky polar groups of nonionic
surfactants have a similar effect. So we understand qualitatively that more cosurfactant pro-
motes W/O rather than O/W microemulsions. More electrolyte compresses the double layer,
diminishes the sideways pressure of the double layer, and also promotes W/O
microemulsions. The polar groups of PEO nonionics become more compact (less soluble)
at higher temperatures, and so with this type of surfactants high temperature leads to
W/O microemulsions.

From the above reasoning we expect that each composition of the interface has its own
curvature at which the interface forms most easily and thus has the lowest interfacial tension
(this interfacial tension, o, of the droplet interface should not be confused with that of the
macroscopic interface, y). This consideration was made more quantitative by Helfrich [13],
who presented an expression for the curvature free energy,

F, = J [QKL (e1+ ¢ — 26‘0)2 + ??C]Cz:l dA 2
A

as the free energy contribution due to bending of a flat interfacial area A. ¢ and ¢, are
the local principal curvatures, ¢y is the spontaneous {(or preferred) curvature, K is the

[R— -

CONC. of SALT or CONC. of COSURFACTANT, or TEMPERATURE

Figure 3 Schematic representation of the influence of surfactants on the curvature of the interface.
The hydrophilic parts of the surfactant molecules repel each other sideways, tend to curve the interface
around the oil side, and promote O/W emulsions. This effect is most pronounced with long and/or
bulky nonionic polar groups or, in the case of ionic surfactants, at low electrolyte content, where
the double layers are extended. On the other hand, the mutual repulsion of the hydrophobic parts
of the surfactants tend to curve the interface around the water side and promote W/O emulsions. Here,
long hydrocarbon tails and/or close packing, as in combinations with cosurfactants, make the effects
more pronounced. (After Refs. 11 and 12))
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bending elastic modulus, and K is the Gaussian or saddle splay modulus. (c; + ¢2)/2
is referred to as “mean curvature,” while the product c¢jcp 18 designated “Gaussian
curvature.”

For a single droplet of radius R we have

F, = 81K(1 — coRY’ +4nK  (single droplet) (3)

where 47K can be scen as the free energy needed (or furnished if K is negative) to detach a
suitable area of flat interface and close it around one droplet.

In a Winsor 1 or Winsor II system (generally called saturated droplet type
microemulsions), the interfacial tension, o, of the droplets can be related to the (measurable)
macroscopic interfacial tension, v, of the flat interface separating the microemulsion and the
excess phase by

U PRae® (2N , 2R RF, 2

_ 4Kcq + 2K+ K
R R2

4

We note that Eq. (4) does not contain finite size effects, which are expected to be present in
the small systems we are dealing with here. An inclusion of such effects is postponed to Sec.V.

Figure 4 gives a schematic picture of Eq. (4), that is, the interfacial tension of the
droplet interface as a function of the inverse radius of curvature, 1/R. Curvature and radius
of curvature are arbitrarily set positive for curvature around the water side (W/O) and nega-
tive for the O/W type.

-1/R - [-i-\.]m (ng) + [[.l_‘]w +1/R

FLAT

Figure 4 Tension of the droplet interface o versus the inverse radius of curvature for two systems. In
one (— — —) the repulsion between the polar groups wins and brings the “preferred” radius onto the
O/W side; in the other ( ) there is strong hydrophobic repulsion, and the “preferred” radius is on
the W/O side.
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From Eq. (4) it follows that the minimum of the interfacial tension of a droplet (the
minimum in Fig. 4) is found at

(l) . ZKC() ( 5)
R/yin 2K+K

(1/R)yn differs from ¢q due to the fact that according to Eq. (3), a term 47K must be added
to the curvature free energy to form a droplet.

The bending elastic quantities being on the order of £T (as we show in Sec.VI), the
system may increase its configurational entropy without much of a curvature free energy
penalty by exploring a distribution of sizes around the one given by Eq. (5) (see Fig. 4).
The entropy of mixing tends to maximize the number of droplets, and its effect is expected
to result in a smaller average value of |R| than the one that minimizes the curvature free
energy, Eq. (5). In the case of saturated droplet-type microemulsions we may safely say that
if the absolute value of the preferred curvature, ¢y, is significantly different from 0 (if not,
the very presence of a microemulsion with a droplet structure may become doubtful),
its sign determines whether O/W or W/O microemulsions are found. Now, as already
mentioned in a more qualitative way at the beginning of this section, the sign and magnitude
of ¢y are determined by two competing forces at the droplet interface: The hydrocarbon
chains that tend to bend the interface around the water side contribute positively to ¢g
(in our definition of the sign of the curvature), whereas the counterions of the ionic
headgroups contribute negatively. At low salt concentration, for example, the contribution
of the electrical double layer to the preferred curvature dominates, and an O/W system
is found (Winsor T). On increasing the salt concentration, the preferred curvature becomes
less and less negative and the average droplet size is found to increase. At a certain salt
concentration the contributions of the electrical double layer and the hydrocarbon chains
to ¢ cancel out, and a structure with a zero mean curvature is expected. In fact, many
structures have zero mean curvature, not only (on average) flat monolayers but also cubic
phases where (again on average) ¢; = —¢; (the so-called plumber’s nightmare [14]), and
it is a nontrivial task to determine the stable one, especially since fluctuations around
the (mean) curvature of the monolayers are expected to be present. It turns out that at
low surfactant concentrations, a system consisting of a surfactant-rich middle phase
coexisting with excess oil and water phases is found. The structure of the middle phase
is probably bicontinuous, although it has been argued [15] that the structure might switch
over rapidly from water droplets in oil to oil droplets in water. Upon increasing the salt
concentration even further, ¢y becomes positive and a W/O microemulsion becomes stable,
the average size of the droplets decreasing with increasing salt concentration. A similar
phase inversion is found in systems where a cosurfactant is present [16]. In that case, increas-
ing the cosurfactant concentration in the system leads to a slightly increased adsorption of
cosurfactant molecules at the droplet interface, resulting in an increased surface pressure,
hence a positive contribution to cg.

In order to proceed further, a thermodynamic formalism is needed that quantitatively
relates the bending elastic quantities mentioned above to measurable properties of
microemulsion systems (such as average droplet size or interfacial tension of the flat inter-
face between the microemulsion phase and the excess oil or water phase). As a second step
it is necessary to relate experimentally adjustable quantities such as the salt concentration
and the nature of the surfactant to the bending elastic properties by means of molecular
models. The state of the art is presented in the following sections.
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IV. MODELS FOR THERMODYNAMIC CALCULATIONS

In the course of the years, several types of models have been proposed and worked out. In the
carly years (1940-1970) a microemulsion structure was postulated, e.g., that of isodispersed
droplets of oil in water or water in oil, and the free energy of such a system was formulated
from known or estimated interfacial tension and bending free energy of the monolayer
as related to the overall composition of the system.

Interfacial tension and interfacial composition can be measured by performing exper-
iments at low surfactant concentrations [see Eq. (1) and Fig. 1 for an example]. But bending
free energies are much more difficult to come by, and even the entropy of mixing has posed
some problems, as will be mentioned in Sec.V. In later years, starting with a paper by Talmon
and Prager [17] in 1977, other models were proposed and worked out. These models are of
three types:

1. Divide the total available volume into small volume elements (Voronoi polyhedra;
later on, more simply, cubes were used by de Gennes and coworkers [18,19]), dis-
tribute oil and water (random distribution gives easy access to the entropy of
mixing) among these volume elements, and place surfactant film at all oil/water
boundaries. Choose the linear size of the volume elements equal to the persistence
length [the length over which a (single) flexible film remains essentially flat]. Find
the contribution of the film to the free energy from the interfacial tension and
the bending free energy (caused by the difference between its average curvature
as found from the model and the preferred curvature), and determine which
monophasic or multiphasic situation gives the lowest value of free energy at a
given total composition. An extension of this approach, where the lattice par-
ameter is related to the ratio of the dispersed volume to the total interfacial area
of the microemulsion, was put forward by Andelman et al. [20].

2. Construct an imaginary lattice (e.g., simple cubic lattice), and place O, W, and
surfactant molecules on the lattice in such a way that a surfactant molecule
occupies two neighboring sites—one with its polar group, the other with its
bydrophobic part—and require that each lattice site contain only polar parts
of molecules or hydrophobic parts of molecules. A simple example was proposed
as carly as 1968 by Wheeler and Widom [21], who assumed that, just as the
surfactant occupies two neighboring sites, oil and water each also occupy two
neighboring sites. Extending the system by adding suitable interaction energies
between “oil” sites and “water” sites and making these energies dependent on
the number of surfactant molecules meeting at one “oil” or one “water” site results
in a model that represents the phase behavior of microemulsions in a rather
realistic way as shown by several recent studies [22-24].

3. Finally, the Landau—Ginzburg approach can be applied to microemulsions. In this
approach the thermodynamic behavior of a system in the neighborhood of critical
points is studied. For microemulsions this approach uses the expansion of the free
energy in (spatially varying) order parameter fields that are identified as the local
concentration differences of oil, water, and surfactant. We will not elaborate this
approach but refer to a recent review by Gompper [25].

These three theories predict the global phase behavior of microemulsion systems in
terms of bending elastic properties (first approach), molecular interaction parameters
(second approach), and expansion coefficients of order parameter fields (third approach).
In this review, we try to fill the gap between the “early years” approach and item 1, above.
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Whereas in approach 1 lattice models are used, we will work in the “continuum,” making
extensive use of interface thermodynamics. The advantage of such an approach, as it turns
out, is that detailed properties such as the size distribution of microemulsion droplets
and the interfacial tension of a flat monolayer separating a microemulsion and an excess
phase can be predicted. On the other hand, the lattice approaches as summarized in item
1 predict global phase behavior, which is not (yet) possibie with the thermodynamic for-
malism reviewed in the following section. The reason is that currently a realistic model
for the middle phase is lacking. A more detailed discussion regarding this issue is presented
in Sec. VIIIL.

V. THERMODYNAMIC FORMALISM OF DROPLET-TYPE MICROEMULSIONS

A. Free Energy of Polydisperse Droplet-Type Microemulsions

We briefly review the formalism given in Ref. 26, to which the reader interested in the details
of the derivation is referred. We do, however, use a different expression for the entropy of
mixing. We note that the result [cf. Eq. (7)] can also be derived starting with the droplet
partition function [27]. The Gibbs free energy of a droplet-type microemulsion can imme-
diately be written in two equivalent ways as

G:ZNiui:ZNimﬂi+ZNtlju(U (6)
i i J

where N; and y; are the number of molecules and the chemical potential of the components
making up the microemulsion. In the second step in Eq. (6) we have implicitly defined
droplets of category j, where j refers to the number of surfactant molecules at the interface
between a droplet and the continuous medium. Of course, other definitions of droplet cat-
egories are possible. The chosen definition assumes rapid exchange of oil and water mol-
ecules but a relatively slow exchange of the surfactant molecules. The subscript im in
Eq. (6) refers to component i in the continuous medium phase, while the subscript dj refers
to a droplet of category j. ny and ; are the number of droplets of category j and their
chemical potential, respectively.

The droplets are considered to also include the adsorption layers. For a detailed dis-
cussion in terms of the Gibbs surface between the droplets and the medium, the reader
is referred to Ref. 28.

The Gibbs free energy can also be written by first considering the system in a reference
state where the microemulsion droplets are hanging on microsyringes. The free energy of the
system then equals the sum of the bulk free energies of the two different “phases,” i.e., a
“phase” of droplets and a “phase” of continuous medium, plus the interfacial free energy.
An additional contribution to the free energy of the system arises once the droplets are
allowed to move freely in the continuous medium (and the assignment “phase”as used above
for the droplets and medium ceases to have meaning). This term is the free energy of mixing,
which quantifies the number of additional configurations of the system due to the release of
the droplets from the microsyringes. So we finally have

G:ZNim/’L;Fm+ZZNiju;‘_ZAijW+ZU/Aj_TSmix 7
i P Jj J

where the u*’s are the chemical potentials of the different components at the pressures inside
the two different phases. The subscript im again refers to the medium, and the subscript i
refers to component i inside all droplets of category j. In the present formulation we have
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assumed implicitly that all adsorbed molecules belong to the droplet. Ap; is the difference
between the pressure in the interior of a droplet of category j and the outer pressure,
V4 is the volume of all droplets of category j, and ¢; and 4; are the interfacial tension
and interfacial area, respectively, of (all) droplets of category j. The last term (negative sign
included) in Eq. (7) is the free energy of mixing, and Sp.;; the entropy of mixing.
Equation (7) is most easily derived by first defining the Helmholtz free energy, since
the two phases are at different pressures.

It is worth paying a little attention to the last term in Eq. (7). Neglecting excluded
volume effects, the number of additional configurations of the droplets upon their release
from their fixed positions is

with V" the volume of the microemulsion phase and / the length over which a droplet should
be translated in order to be counted as a new configuration. This is equivalent to the
collection of droplets residing on a cubic lattice with lattice parameter [ Using the
definition Spix = kInQ and taking the thermodynamic limit, the entropy of mixing
becomes

Suix = =k ) _nalln(p;) =11 = =k ) Sng |:1n ¢~ 1—In (%)] ®)
/ J

with p; the number density of droplets of category j, ¢; their volume fraction, and v, the
volume of a single droplet of category ;.

The first equality of Eq. (8) is of the same form as the negative free energy of an ideal
gas (where the summation is over only a single category) divided by temperature, with
the de Broglie wavelength replaced by the length /. The fundamental difference between
these two lengths is that the first is a momentum space quantity, while the second is to
be evaluated in configuration space only. This evaluation is quite a subtle problem, as
may be judged from the many choices that are (usually implicitly) made for this quantity,
i.e., from the de Broglie wavelength of a drop [29] to the full size of a drop [20,30]. The
treatment in Ref. 31 is based on the idea that the length / as defined in configuration space
should be consistent with the full entropy of the system as defined in phase space. In other
words, one must be careful not to either overcount or underestimate the number of
additional configurations of the system that occur when the droplets are released from their
fixed positions. In Ref. 31 an estimate of / is made by analyzing models that can be evaluated
in full phase space and subsequently comparing the result to the definition of mixing entropy
given by Eq. (7) for the same model. It turns out that the length / as defined by Egs. (7) and
(8) is on the order of the cube root of a molecular volume. This value is consistent with
the one estimated much earlier [32] for microemulsion systems that were assumed to be
monodisperse. In that estimate, /> was found to be equal to the molecular volume of
the continuous phase.

We note that the calculation of mixing entropy transcends the microemulsion field and
is relevant also to phenomenological theories of nucleation. In that field the length / appears
in the “replacement free energy problem” (see Ref. 33 and, more general, Ref. 34).

It was stressed in the Introduction that microemulsions can exist because of the com-
pensation for a small positive interfacial free energy by a small negative free energy of
mixing. Here we are at a point where we can give some idea of how small is small. Taking
droplets with an average radius of 10 nm at a volume fraction of 1%, assuming that most
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of the volume is spread among droplets between 8 nm (j =~ 800) and 12 nm (j =~ 1800), and
assuming that / = 0.5 nm, we find a free energy of mixing per droplet of about 20 k7. This
requires the interfacial tension o to remain below 0.06 mN/m (say below 0.1 mN/m) to
satisfy the relation 04 < TSnix-

In Egs. (7) and (8), droplet categories are defined by their number of adsorbed
surfactant molecules. The only constraint in our model is that the droplets are spherical
on average. Shape fluctuations are, at least in part, taken into account by the interfacial
tension of the droplets. The analog of shape fluctuations on a flat interface is the capillary
wave spectrum, the free energy of which is part of the interfacial free energy. Therefore,
treating all configurations corresponding to different shapes of the droplets (i.e., counting
all spherical harmonic modes) explicitly in our model leads to redundancies. However, there
may be finite size effects due to the fact that not all (spherical analogs of) capillary wave
modes are available for the droplets. In the next section we discuss how to implement this
effect.

B. Size Distribution

The size distribution of the droplets [in the form of values of the individual ¢;’s; cf. Eq. (19)] is
obtained by minimizing the free energy, Egs. (6)—(8). This will be done by applying the law of
mass action. The chemical potential of a droplet of category j is calculated from Eq. (7),
where use is made of the generalized Laplace equation. This chemical potential is sub-
sequently equated to the chemical potential following from mass action; i.e., it should equal
the sum of the products of the number of molecules and their respective chemical potentials
for all components making up a droplet. In order to find the chemical potential of the droplet
categories we first need to specify the pressure differences between the droplets and the outer
pressure as well as the chemical potentials of the components. The first is given by the gen-
eralized Laplace equation,

20; 2¢
Apy == _ 25 ®)
TR R
where R; is the radius of a drop of category j and the bending force ¢; is
oo 2K+ K
¢ =|—-—= = —2Kc¢y + (10)
! (8(2/ R)) R=R; R;

where we have used Eq. (4). A straightforward derivation of Eq. (9) from mechanical equi-
librium is given in Ref. 28. Before proceeding further, it is useful to specify the total
interfacial area of the system as

Y A=) ngAnR: (11)
7 7

and the total volume of the droplets of category j as
4
Vaj =1 5 R} = ZNU-W (12)
I

where v; is the molecular volume of component 7. The volume fraction of droplets of category
j is given as
4 , V.
¢] = =7 Rj3 @ = dj
3 vV Zj Vdj + Zl’NimVi

(13)
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The chemical potentials of the components in the continuous medium now follow from
Eg. (7) with Eqs. (1D—(13).

oG - N gi
;= ( ) = ,Lt;.km — kT Lvi (14)
T.p,N

aNim 7. V

jmim

so that
D Nty =) Nimith, = kT Y " ngy (15)
im i J

where a term linear in the total volume fraction of the droplets has been dropped. From this
equation together with Eq. (7) it follows that, at constant ag (k # j),

3G Nywy; 4, 2¢; Vs
==Y — 24 aR| o+ ) +kT|Ing;, — In{ 2
= = Sy o8 o+ ) 7|ty () 1o
For the components making up the droplets we have
P gy, 26, 2¢
,UU H; , 8p /4 1 + pjvl Ui + R] R]z Vi ( )

where we have used Eq. (9). 1/} is the chemical potential of the droplet components at pressure
p- Putting py; from Eq. (16) equal to the chemical potential of the droplets following from
mass action, that is,

Ny
my =) H (18)

eliminating uj; with Eq. (17) and making use of Eq. (12) for the droplet components, we arrive
at the size distribution

_ [_ (4/3)nRIAT + 4 R}UJ]

¢; = 7 CXP T (19
with Ap = (u; — u;)/v;, where the numerator is the difference between the chemical
potentials of the components inside the droplets and that in a noncolloidal phase of these
components, both at pressure p. It was shown in Ref. 28 that, at least for monodisperse
systems, (u; —p,;)/v; does not depend on i We assume that this remains true for the
polydisperse microemulsion systems considered here. This requires that the compositions
of the solutions in all the droplets and in a non-colloidal phase of these components be
identical and that Az = 0 in order to obtain a microemulsion in equilibrium with an excess
phase of the same composition as the droplet interiors. We are particularly interested in
these kinds of systems, as in that situation the amount of dispersed phase and the average
size of the globules are “chosen” by the system, i.e., not determined by the total volume
of available dispersed phase, at least when this volume is large enough.

In Sec. III it was shown that if it is assumed that the interfacial tension of the droplets
depends on curvature as prescribed by Eq. (4), then some essential features of
microemulsion systems can already be qualitatively understood. In Ref. 27 the opposite route
was followed. It was assumed that the interfacial tension does nor depend on curvature, and
in that case severe inconsistencies between theory and experiments were observed. As also
mentioned in Sec. III, Eq. (4) does not account for finite size effects. We take into account
both curvature dependence and finite size effects by using the Ansatz for the interfacial
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tension,

4Kcy 2K+ K . In())
x e + sz4nR]2
The first three terms on the right follow from Helfrich’s free energy expansion in the cur-
vature [13] as discussed in Sec. III of this chapter and are identical to the right-hand side
of Eq. (4). The last term quantifies the finite size effect as mentioned at the end of
Sec. VA, It was introduced by Fisher [35] in his treatment of condensation and is widely
used in phenomenological theories of nucleation (see, e.g., Refs. 36 and 37). ' has an esti-
mated value on the order of 1. We note that the calculation of z’ from a model is far from
trivial; see, for example, Ref. 38 for a discussion of the relatively simple case of on average
flat interfaces.
Combining Egs. (19) and (20) and setting Apr = 0, the size distribution for a saturated
droplet-type microemulsion can be written as

o(Ry) =7 — (20)

¢; = Cf° exp(Zoj'* — 7)) (2D
with
4w a4\32 —4n(2K + K)
¢ =55 () "o () (2)
. V0 . 16nKcy so,\1/2 3
_ 7%, - N =2y 22b
"=k YT T (47r) : 27 ¢ (22b)

where o is the average area occupied by a surfactant molecule. The droplet radius R; is
defined by

os] = 47tRj2 (23)

and vy occurring in Eq. (19) has been replaced by

4 5 4 (o5 32
0 =37(%)

We need the values of z, ¢y, C, and 7 for further calculations with the size distribution. The
first three quantities should (ultimately) follow from a molecular model (see Sec. VI),
but we still need to determine 7. This quantity plays the role of a Lagrange multiplier coupled
to the total interfacial area in the system. Noting that the total number of surfactant mol-
ecules in the system is conserved, and assuming that the overwhelming majority of
surfactant molecules reside at the droplet interface, we may write

Nv = jndj = J ¢j
Csa = 4, = - = —_— 24
V ]X:I: V J; Vaj (24)
with ¢, the (known) number density of surfactant molecules in the microemulsion.
Equations (24) and (21) together provide a relation for 3, which adjusts itself automatically
to the required value by a slight adaptation of the free surfactant concentration. Note that
a second Lagrange multiplier, Ax in Eq. (19) would appear in Eq. (21) if there were no
excess phase present in the system. This multiplier couples to the total amount of dispersed
volume in the system.
With Eqgs. (21)—(24) it is, in principle, possible to obtain measurable properties of satu-
rated droplet-type microemulsions: the total volume fraction of the droplets; the interfacial
tension between the microemulsion phase and the excess phase; the average size of the
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droplets, i.e., moments of the size distribution; and the polydispersity. In order to obtain
numbers one needs to know the values of five independent parameters [see
Egs. (21)-(24)], 2K + K), Kcy, 05, I, and z. These values should be obtained from molecular
models or from independent experiments. A discussion of possible procedures is presented
in the next section.

Before closing this section, we note that in the treatment of droplet-type
microemulsions by Borkovec [39] and by Eriksson and Ljunggren [40], fluctuations in
the number of molecules inside a droplet as well as fluctuations around the average area
occupied by a surfactant molecule are explicitly taken into account. Their treatment leads
to a size distribution that can be written in the same form as Eq. (21) but with an additional
(weak) dependence of the “constant” C on droplet size. The major effect of treating the
fluctuations mentioned above is an effectively different value of z from the one obtained
here (but still on the order of 1).

VL. QUANTITIES THAT DETERMINE THE SIZE DISTRIBUTION OF
SATURATED DROPLET-TYPE MICROEMULSIONS

A. Bending Elastic Quantities

As mentioned in Sec. III, the effect of an adsorbed surfactant monolayer at the oil/water
interface on the bending elastic quantities can be split into two contributions.

1. The contribution of the “brush” formed by the tails of the surfactants (chain con-
tribution)

2. The contribution of the electrical double layer formed by the charged heads of the
surfactant molecules, the counterions, and the ions of added salt in the aqueous
solution (electrical double layer contribution)

Before presenting results for these quantities, let us first consider how these contributions to
the bending elastic quantities can be calculated.
The free energy per unit arca of a uniformly bent interface can be written as

1 .
Je=Jfo —2Kcoler + ) + 5 K(c1 +)* + Keie (25)

where f; is the free energy per unit area of flat interface. This equation is not simply £,./A4
with F, given by Eq. (2) but contains a constant contribution fy (containing 2Xc3) from
the flat interface. For a sphere, ¢; = ¢; = 1/R, and Eq. (25) takes the form

f=f _%ﬂ+2KR—§K
[Note the equivalence of Eqs. (26) and (4) for the interfacial tension, o(R).] For a cylinder,
¢1 = 1/R and ¢; =0, so that

(sphere) (26)

2Kc¢ K .
fo=/fo— —ﬁi’ +5g  (cylinder) (27)

If we now compute the free energy of an interface bent into a sphere and that of one bent into
a cylinder, we can extract K, K, and ¢y by comparing these free energies with the
phenomenological expressions Eqs. (26) and (27). Such calculations have been carried
out both for the bent brush part of the ionic surfactant monolayer and for the bent electrical
double layer part of the adsorbed ionic surfactant monolayer.
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Using the analogy that can be drawn between the system of end-grafted polymer chains
and the chain part of a surfactant monolayer, Milner and Witten [41] obtained simple ana-
lytical expressions for the bending elastic quantities. For the case of a “melt brush,” i.e.,
one in which the density is forced to be uniform, they obtain

3
Ky = z fU.chh(z) (28)
N
Ky = _gf(),chho (29)
3
(Keo)en = gfo,chho (30)

The subscript ch refers to the chain contribution, and here fj o is the free energy per unit
area of a flat brush, for which Milner and Witten obtained the expression

’Nw? 3
ha =" (a7 Y

and hy = Nw/p,, is the height of the brush. In the above expressions N is the number of
monomers per chain, o is the number of chains per unit area, p,, is the number of monomers
per unit volume, £ is the bond length, and Cy, is the characteristic ratio relating the mean
square end-to-end distance Rﬁ to the number of monomers per chain and the bond length
(R2 = N¢*Cy in the melt).

Using typical values for polyethylene chains (w =4 nm~
£ =10.153 nm, Cy, = 6), one obtains

2, P, = 34.6 nm=3,

Socn = 0.47NkT nm—2 (32)
and

ho = 0.12N nm (33)

The method used by Milner and Witten is valid only in the limit of very long
hydrocarbon tails on the surfactant molecules. From the calculation presented above it
appears that even for relatively short chain surfactants it yields commonly accepted values
for the bending elastic quantities, i.e., K, K| are on the order of k7" and K¢y is on the order
of 1k7 nm~! = 10712 N,

Starting from the Poisson—Boltzmann equation it is possible to calculate the free
energy of a curved double layer in terms of an expansion in 1/xR, where x is the inverse
Debye length [k = (870nq)"/?, with Q defined by Eq. (38) below and n the number of
molecules of 1: 1 electrolyte per unit volume] and R is the radius of curvature of the charged
interface. Obviously this expansion is valid only for xR >» 1, i.e., for situations where the
radius of curvature is (much) larger than the Debye length [28,42-44]. Using this method
(the derivations are given in detail in Refs. 43 and 44), one obtains for the electrical
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contributions to the bending elastic quantities

kT ((g—1)g+ 2))
Ko = 34
oy 9
—  —kT{ In(z) d=z
K= J n(z) (35)
0K Jo—2p4q Z— 1
—kT g+1
(Kco)e] = E@ IH<T) (36)
where the quantities p and ¢ are related to the surface charge density o,
p=20[%s g= (P 1) @)
where e is the elementary charge and Q is the Bjerrum length,
2
e .
0= yr—— (= 0.7 nm in water at 298 K) (38)

In this equation, ¢, is the dielectric constant of the solution and &y is the permittivity of
vacuum. The negative sign in (Kcp)(, Eq. (36), is due to the fact that the electrical double
layer tends to bend the interface around the oil side (co e < 0).

In writing down Eq. (37) it is assumed that the surface charge density does not depend
on curvature. In Ref. 28 arguments are given that the surface charge density does depend on
the curvature. There, for an interface bent around the water side, it is assumed that

f 2
Peurved :pﬂat<l +§>

with £ between 0.2 and 0.4 nm. Even such small values of £ have a relatively large influence
on the free energy of the bent interface.

It is interesting to consider two limiting cases.

1. Low Surface Charge Densities. In this limit p < 1, and therefore g = 1 + p?/2.
Substituting these results into the expressions above, one obtains

2
oy ATU0sse -
K
- 2
K= —nkl ggael/e) (40)
—kTrQ(ca/e)
(Keg)y = XG0l @

Interestingly, the form of these expressions is similar to that of the expressions for the bent
brush, that is, foh2 for K and K and fyhy for Keo. Indeed, the free energy per unit area
of a flat double layer is, in the limit of small surface charge density, given by

2k TQ(0u1/ )’

K

Jo.er = (42)
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while 4y can be taken equal to the Debye length x~!. Using the above results we can write

3
Kel = Zf(),el h% (43)
— 1 5
Ko = —ifO,el h (44)
I
(Keo)a = _Zf().,el ho (45)
2. High Surface Charge Densities. In this limit, p = ¢ > 1, and we obtain
kT
= 46
el ZHQK ( )
— —nkT
_ 47
Kel 6QK ( )
—kT . (p
(e = 5 1n(3) 9)

Again we find that for typical values of surface charge densities |o¢)/e| 2 1 nm~2 and for salt
concentrations between 0.1 and 0.5 M (of a 1: 1 electrolyte), K. and K are on the order of
kT, and |(Kco)y| is on the order of 10712 N. Relatively small changes in salt concentration
may lead to such a variation in the bending elastic quantities that it induces an inversion
of the microemulsion, which, as discussed in Sec. III, is indeed experimentally observed.
Combining, for example, Eq. (30) for the chains [with the numerical values of Egs. (32)
and (33) and choosing N = 6 for the chain length] with Eq. (48) for the electrical double layer
(with |og/e] = 1 nm~2 and 0.1 M NaCl (x~! = 1 nm) in the aqueous solution), we find

Keg = (Kcg)en + (Keo)e

270 ™3
= 0.58kT nm ' =238 x 107? N

This (a quantity without any subscript symbolizes the total contribution) is of the expected
order of magnitude and with a positive sign (i.e., curved as for water droplets in oil). Exper-
iments show [16,28] that for SDS (Cj, chain) as the surfactant combined with pentanol
as the cosurfactant (20% w/w in cyclohexane), ¢y is zero at 0.15 M NaCl, and thus at
0.1 M NaCl the system forms an O/W microemulsion with K¢y negative.

The choice of N = 6 in the above numerical example is reasonable for comparison
with the experiments, since according to Ref. 41 a mixture in the interface of about
25% Cy; chains and 75% Cs chains behaves in the bending as if all the chains had a length
somewhat greater than Cs, the extra length of the C;, chains sticking out of the closely
packed Cs layer offering very little resistance to bending.

Our conclusion is that the theory, as described above, fits reasonably well to
experiments, although the contribution of the chains to K¢y may be somewhat too large
and/or the double layer contribution somewhat too small. The double layer contribution
would become larger if we were to take account that the surface charge density increases
on bending around the water side (see Ref. 28), and the chain contribution may have been
overvalued by applying a theory developed for long chains (see Ref. 41) to rather short chains.

= % Jo.cnho — k—T (1—7) =(0.76 — 0.18)kT nm ™"
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In general it seems a good idea to check theories at the condition where ¢y, becomes
zero and to remember that at the present stage the theories, both for the ¢lectrical effects
and for the chains, may need quantitative adaptations on the order of several tens of percent.

Experimentally, the bending elastic modulus K as measured by ellipsometry is indeed
found to be on the order of (0.1-1)k7 for quite a wide range of microemulsion systems; see,
e.g., Ref. 45 for a system with a single-chain ionic surfactant plus cosurfactant, Ref. 46
for a system with a double-chain ionic surfactant in which the chain length of the oil (linear
alkane) is varied, and Ref. 47 for a system with a nonionic surfactant in which the chain
length of the surfactant is varied.

In ellipsometry the fluctuations in the interface position (capillary waves) manifest
themselves, and when the interfacial tension vy is sufficiently small, the influence of K
on the interfacial waves can be measured.

As follows easily from Eq. (3) for the bending free energy of a single drop, the term with
the Gaussian modulus is proportional to the number of droplets in a system, just as the
mixing entropy is. For this reason, the Gaussian modulus can be obtained from experiments
only by using an expression for the mixing entropy. Several assumptions in the literature
[27,48-52] point to values roughly in between —kT and +kT for K.

Just like the Gaussian bending elastic modulus, the quantity K¢y can, in general, be
obtained only by assuming a model for the mixing entropy. However, one of us [53] showed
recently that when the average size of the droplets is large (say, several tens of nanometers),
the quantity K¢g can, to a good approximation, be obtained from an average radius and
the interfacial tension y between the microemulsion phase and the excess phase without
the need for numerical values of (2K + K), gy, /, and z (see Sec.V, just before the last
paragraph) via

7= 2Keo/ R (large droplets) (49)

In this equation, the average droplet radius is effectively a ratio of moments of the size
distribution, Eq. (21), i.e.,

(R _ YR Rpy _ 355 RI9;/(4/3)mR])
(RF) Z;il R;'ij Z;Di} ch[¢]/(4/3)ﬂR;’]
X R exp(—i) + &)

TR R exp(= + o)

Ry =
(50)

where R; is defined by Eq. (23). Equation (49) can be obtained from Eq. (50) by replacing the
summations by integrations and assuming that ¢y >> 7. This derivation is given in some
detail in Ref. 33. Note, however, that in this reference a slightly different definition of
Ry, was used. i and & depend on the technique used to measure the droplet size; e.g., if
the volume of the dispersed phase is measured and the interfacial area is known, one obtains
Ry with i = 3, k = 2, whereas by measuring the radius of gyration one has approximately
i =8, k=6. Equation (49) is a generalization (to polydisperse systems) of the result of
de Gennes and Taupin [18] using ideas from Robbins [11] for strictly monodisperse systems.
We emphasize that, strictly speaking, Eq. (49) has only limited applicability, i.c., its
right-hand side is the first term in a series in 1/ Rllk/ 0 of which convergence is questionable
in situations where the average size of the droplets is smaller than about 10 nm. Once Eq. (49)
is valid, however-—that is, at large average radius and therefore at small y—the quantity Kcy
can be obtained directly from experiments without making assumptions for the mixing
entropy and the value of z
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Incidentally, for the interfacial tension y* and the radius R*, belonging to the maxi-
mum volume fraction ¢; (this R* must be close to the average radius Rllk/ ’—k)), an equation
similar to Eq. (49) can be derived very simply from 9¢;/dj = 0 [see Egs. (21)-(24)]. This
leads exactly to

*

ZKC() zkT
= T
R 47(R*)

(51

The second term on the right in Eq. (51) is on the order of 10% of the first term.

In the next section we consider experimentally obtained data sets from which Kcy is
extracted in the way described above. These results confirm the expectation that the spon-
taneous curvature, ¢y, is on the order of the inverse average droplet radius in a saturated
microemulsion system. This expectation follows from the relation, Eq. (5), between ¢
and Ry v and the fact that the entropy of mixing makes the average droplet radii somewhat
smaller than Ryn.

B. Molecular Area of Surfactant(s)

The average area occupied by a surfactant molecule, ¢, is obtained by measuring the tension
of a macroscopic oil/water interface as a function of the surfactant concentration below the
cmc and applying the Gibbs adsorption equation. This area turns out to be fairly indepen-
dent of the concentrations of the constituent parts of a given microemulsion (i.e., salt and/or
cosurfactant concentration) [5,54]. It varies between approximately 0.6 nm? for AOTsystems
[54] and about 1 nm? for SDS—cosurfactant (linear alcohol) systems [5]. In the latter
situation, this area is shared with approximately two to three cosurfactant molecules. It
is assumed here that the area per surfactant molecule at the droplet interface does not differ
from the one at the macroscopic oil/water interface [see, however, the discussion following
Eg. (38)]. The only experimental indication that we are aware of that indeed points to
the validity of this assumption comes from small-angle X-ray scattering (SAXS) measure-
ments [55].

C. Length Scale for Configurational Entropy

As already indicated, the length / cannot be measured directly. It is sensitive to the model
employed in the description of a microemulsion. For the phenomenological model as
described in this chapter, it is found to be on the order of the cube root of a molecular
volume in the liquid state [31], that is, approximately 0.5 nm.

D. Value of z

In Ref. 27, Kegel and Reiss estimated z of the basis of experiments on microemulsions.
Assuming that the average radius of a drop never exceeds 2/c¢g, they found the inequality
(independent of their somewhat different definition of Ry)

3/4 <z <3/2 (52)
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Vil. GENERAL PROPERTIES OF THE SIZE DISTRIBUTION AND
EXPERIMENTAL TEST OF THE THEORY

A. Order of Magnitude of Measurable Properties of Saturated
Droplet-Type Microemulsions

We summarize the estimated ranges of the quantities discussed in the previous section:

0 <K +EK)/kT <3 (53a)
0.01 < |Kco|/(kT nm™') < 1 (53b)
05<o,nm™? <1 (53¢)
P~ 0.1 nm? (53d)
3/4 <z <3/2 (53e)

As mentioned in the discussion around Egs. (21)-(24), we need values of the five parameters
listed in Egs. (53) and of the surfactant concentration, ¢y, to be able to calculate values of
various properties of microemulsions {O/W +O or W/O +W). Of these five parameters
the area per surfactant molecule, ¢;, can be determined accurately from the Gibbs adsorp-
tion equation, Eq. (1), and there is only a small uncertainty regarding the values of /
and z.

We therefore choose o, = 1 nm? in the following calculations and take /* = 0.1 nm?
and z=3/2 or 3/4. We choose 10 mM for the surfactant concentration in Table 1 (and
50, 16.7, and 8.3 mM, respectively, in Fig. 5), assuming that all of it is adsorbed and the
amount of dissolved surfactant is negligible. A number of values of 2K + K and of Kcg
are taken within the ranges indicated in Egs. (53a) and (53b).

Then we (iteratively) calculate y from Egs. (21)—(24). This results in the size distribution
{¢;}, from which the average size of the droplets follows using Eq. (50) and the total volume
fraction of the droplets, ¢, by summing Eq. (21) over all categories. In Fig. 5 we show a
set of typical size distributions obtained in this way.

Table1 Properties of the Size Distribution as a Function of the Input Parameters Kcy and 2K + K?

Keg (kT nm™1) 2K+ K (kT) y (kT nm™%) Rz (nm) ¢ &
0.01 1 0.1 13 0.0028 0.46
2 0.0021 14.0 0.03 0.34
3 0.00048 471 0.12 0.20
0.1 1 043 0.8 0.0017 0.36
2 0.065 36 0.0072 0.23
3 0.0285 7.6 0.0172 0.16
0.5 1 >2 <l — —
2 1.0 1.1 0.0023 0.19
3 0.545 2.0 0.004 0.14
1 1 >2 <1 — —
2 >2 <1 - —
3 1.97 1.1 0.0028 0.14

2 The values of the other parameters were fixed at ¢y, = 10 mM, /* = 0.1 nm?, z = 3/2, 5, = 1 nm?. “Droplets”are

considered to be of molecular size if Rs; < 1 nm and 7 > 2k7 nm™~.
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Figure 5 Size distributions calculated for K¢y = 0.05k7 nm~!. The solid curves were calculated
using z = 3/2; for the dashed ones, z =1 was used. Going from the upper to the lower curves,
the surfactant concentration was fixed at 50, 16.7, and 8.3 mM, respectively. The values of the other
parameters are /* = 0.1 nm?, ¢, = 1 nm?, 2K + K = 3kT/2. (From Ref. 27)

The polydispersity ¢ is obtained via

2 172
&= (g—i— - 1) (54)
(R)

From experimental investigations reported in the literature in which the interfacial tension,
the average droplet size, and/or the polydispersity of Winsor IT systems is measured (see,
e.g., Refs. 28, 46-48, 50, and 54-56), we estimate that at ¢, ~ 10 mM the average size
of the droplets is in the range R3 = 2-20 nm, the macroscopic interfacial tension
y =0.001-01 mN/m, the volume fraction of the droplets ¢ = 0.01-0.1, and the
polydispersity is roughly 0.1 <& < 0.4. We raise the question of whether the orders of
magnitude of this set of data can be reproduced by the theory using the values of the par-
ameters in the ranges given in Egs. (53).

Using the values of the parameters as mentioned above, it is found that the combi-
nation 2K + X should be larger than zero in order for a microemulsion with average droplet
size on the order of 1 nm (and interfacial tension smaller than order kT nm~?2) to be stable.
The results are summarized in Table 1.

First of all we can check that except for the upper two rows in Table 1, Eq. (49) describes
the relation between y, Kc¢g, and Rj; surprisingly well, even for very small Rj,. It follows
from Table 1 that when Kco is increased, 2K + K should be increasingly larger in order
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for drops of average sizes greater than 1 nm to be stable. If the value of z is set equal to 3/4, a
larger average drop size is found (approximately 10-20% larger for the relevant values of the
other parameters) as well as a slightly smaller polydispersity (not shown in Table 1). Gen-
erally, with the values of the parameters in the ranges given in Eqs. (53), the average droplet
size varies from molecular lengths to approximately 50 nm, the volume fraction from about
0.002 to about 0.12, the interfacial tension from about 0.002 to § mN/m (at T = 298 K), and
the polydispersity from approximately 14% to 46%.

We conclude from this section that values of the parameters indicated in Eqgs. (53)
estimated from experiments give predictions of measurable properties of droplet-type
microemulsions that are of the same order of magnitude as those found in experiments.
No additional concepts are required to force this agreement.

B. Quantitative Comparison with Experiments

In this section, measured average droplet sizes, droplet volume fractions, and interfacial
tensions are compared with the thermodynamic formalism as presented in Sec.V. These
quantities can be calculated by fixing values of /, z, o;, Kco, and 2K + K, numerically solving
Eq. (24) with Eqgs. (21)-(23) for § (with fixed c,,), and subsequently calculating the average
size of the droplets by using Eq. (50). In practice, not all values of these quantities are known.
For [, z, and g, one can make reasonable estimates, but in order to obtain the bending elastic
quantities K¢y and 2K + K, one needs, at the current state of the art, input from independent
experiments. At the moment there are no microemulsion systems for which both K¢ and
2K + K are known without some theory (of droplet-type microemulsions) being used. There-
fore the whole calculation as outlined above should be done iteratively, using trial values of
one or more of the bending elastic quantities and varying them (within certain windows)
until convergence is reached between theory and at least one measured quantity. It is there-
fore convenient to simplify the equations that interrelate these quantities. By replacing
the summations by integrations in Eq. (50), substituting x = j'/2, and using the method
of steepest descent, the average radius can be approximated as (see Refs. 27 and 53 for
details)

o, (i—k)/2
Re=(3) el - S (59)
and the total volume fraction of the droplets may be written as
AR
¢ = 2C(:) e/ (56)
’y
with
SO = =505 + ox; + [2(z — 1) + 1] In(x]) (57)
and

oGt (& +8[2(z — D) + ip}'/?

I 4,’)“5
x; is the maximum of the function x**~Vexp(—jx? + Gox) = exp{—yx? + Cox+
[2(z — 1) + {]In x}. The subscript i of x} refers to the value of i in Eqgs. (57) and (58). Note
that these expressions differ from the ones given in Refs. 27 and 53 owing to the slightly
different definition of Ry used in this work. Equation (58) is [by the definitions given in

(58)

*
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Egs. (22) and (23)] analogous to Eq. (51). Now the measurable properties of interest in satu-
rated droplet-type microemulsions can be calculated without having to perform extensive
computations.

1. Average Droplet Size and Macroscopic Interfacial Tension
as a Function of Droplet Volume Fraction

As far as we are aware, the only system for which the volume fraction of the droplets, the
average radius (Rs;), and the tension of the macroscopic oil/water interface have been
measured is a Winsor II system composed of SDS, pentanol, cyclohexane, and 0.2 M NaCl
with equal volumes of water and oil phases. This system was studied in Ref. 55. The bending
elastic modulus of this system was measured by ellipsometry [50]. The results of Sec.V imply
that when / and z are fixed, there are still two unknown parameters: the Gaussian bending
elastic modulus and the preferred curvature. Therefore, we choose to test the theory on
consistency, that is, we fix z and / and fit the (Rs2, ¢) data with Eqgs. (55)-(58)—we choose
Kcy and 2K + K, determine the values of 7 that generate the experimental values of ¢,
and compare the calculated droplet radii with the experimental ones. This procedure is
iterated until maximum agreement with the experimental droplet radii is obtained.
Subsequently, we compare the values of the interfacial tension y from y [Eq. (22)] that were
necessary to generate these (Rjzz, ¢) data with the experimentally measured values. Note
that in this treatment the volume fraction of the droplets rather than the surfactant con-
centration conveniently determines the Lagrange multiplier 7. We emphasize that the last
mentioned comparison requires no adjustable parameters. Figure 6a shows the experimen-
tally determined (Rs3;. ¢) data together with the best fit results for constant z = 3/2 and
¢p and different values of K. Figure 6b shows the set of values of the interfacial tension
that were used to generate these data, again together with the experimental results from
Ref. 55.

We note, as already mentioned, that the definition of Ry that was used in Ref. 27 is
different from the definition given in Eq. (50); that is, in Ref. 27 a volume fraction
averaged radius was calculated instead of the number density averaged radius,
Eq. (50). For this reason the values of K¢y and 2K + K are slightly different from the
ones found in Ref. 27

Looking at Fig. 6, we note that the agreement is excellent. Comparable agreement is
found over the whole range of z as given by Eq. (53¢). The value of ¢y obtained in this
way increases somewhat with decreasing z, whereas the value of K decreases and even
becomes negative. This analysis proves that the theory is consistent for this aspect; i.e.,
fitting the theory to experimentally obtained (Rj3;, ¢) data generates the variation of
interfacial tension with volume fraction of the droplets without any additional adjustable
parameters.

The value of ¢ can also be obtained independently from the work reported in Ref. 28,
In this work, among other things, the droplet radii and the interfacial tensions as a function
of the cosurfactant concentration for the same system as used in Ref, 55 were measured. For
the system containing 19% pentanol, which is closest to the 20% used by van Aken [55],
we estimate y = 0.02 mN/m = 0.00487kT nm ™2, and Rs = 12 nm. Substituting these
values into Eq. (49) and using the fact that K = 1kT for this system, we obtain
¢o = 0.029kT nm™!, which is remarkably close to the value of 0.035k7 nm~! used in
Fig. 6. (Moreover, it is expected that ¢ indeed increases with increasing cosurfactant con-
centration.)
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Figure 6 Experimental data of van Aken [55], experimental droplet radius Rsz; versus volume
fraction ¢ of the droplets together with theoretical lines calculated from Egs. (55)-(58) using
K=kT [50], P=0.1nm% ¢, =1 nm?% z=3/2, ¢o =0.035 nm !, and K/kT = 0.25 (dotted line),
0.22 (solid line), and 0.20 (dashed line). In (a) data were fitted using ¢y and K as free parameters.
In (b) the variation of the interfacial tension y necessary to produce the lines in (a) are plotted together
with the experimental points. There is no additional free parameter.
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2. Macroscopic Interfacial Tension and Average Droplet Sizes
as a Function of Salt Concentration

In Sec. VI expressions were given for the chain contributions and the electrical double layer
contributions to the bending elastic quantities. There it was argued that the theoretical results
fit reasonably well to experiments but not well enough to give accurate values for all par-
ameters involved.

With this in mind, we start by writing the preferred curvature as

_ (COK)ch + (COK)el
€ =—""2 =

X (39)

where the subscript ch again refers to the contribution of the surfactant chains. The electrical
part of the preferred curvature is given by Eq. (36). The chain contribution can in principle be
obtained from Eq. (59) if the salt concentration at which ¢y = 0 (or, of course, any other
known value) is known. We prefer this approach rather than using an estimate for the chain
contribution based on Eq. (30) as suggested earlier following Eq. (48).

In Ref. 46, interfacial tension was measured as a function of the salt concentration for
systems composed of AOT, brine, and linear alkanes of varying chain length (Cg, Cyg, Cia,
Cis). In this work, the bending elastic moduli of these systems were determined by
ellipsometry. The droplet radii of these systems are reported elsewhere [48]. The interfacial
tension as reported in Ref. 46 first decreases, goes through a minimum, and subsequently
increases with increasing salt concentration. The minimum (and its immediate
neighborhood) corresponds to an (actually quite special kind of) Winsor III system: a
microemulsion phase coexisting with excess oil and brine. The preferred curvature should
be zero at this interfacial tension minimum. Therefore we obtain (¢pK),, = —(coK)y at
the salt concentration at which the interfacial tension is at a maximum. Note that in
the Winsor I1I region we are not dealing with droplets but (most probably) with a structure
with zero mean curvature. In that case we expect, contrary to the situation with droplets
discussed in Sec. III [see in particular Eq. (5)], that the interfacial tension is at a minimum
when c¢p = 0. Very similar ideas were used in Ref. 28 to give a quaantitative explanation
of the interfacial tension y and the droplet radius R as a function of the salt concentration
on W/O +W microemulsions stabilized with SDS and pentanol.

The constant value of the chain contribution may be considered as a zeroth-order
approximation, where it is assumed that the density of the chains is independent of the
salt concentration. A motivation for this assumption is that the molecular area of the
surfactant as a function of salt concentration in the systems used in Ref. 46 was found [54]
to be constant within the range of experimental error.

The interfacial tension was calculated from surfactant conservation by simplifying
Eq. (24) in the same way as the expressions for the volume fraction and average radii were
simplified by Egs. (55)-(58). This expression reads

172 -
DY A TP o 10 S (SN O
Csg = 2()7) { exp( T e (60)

with, from Egs. (57) and (58),

fxhH = —f;xﬁz + Cox5 + 2z 1In(x3) (6la)
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where

o &o + (G + 162)!/?
2 4_;/”y

(61b)

It can be seen from Eqs. (60) and (61) that when K, ¢,,, and K¢ are known and z and / are
fixed, the interfacial tension still depends on a single variable, the Gaussian bending elastic
modulus. The results together with the experimental data are shown in Fig. 7. The fixed
independent parameters that were used to calculate these curves are listed in Table 2.
Due to the fact that in Ref. 27 an erroneous expression for (Ke¢g),; was used, the values
of (Kcp), in Table 2 are different from the ones used in Ref. 27. We note that the values
of (Kcp),y, listed in Table 2 are indeed of the same order of magnitude as the ones predicted
by Eqgs. (28)-(31) for polyethylene chains (with small N, say N < 10). The decrease in
(Kcp)y, With increasing chain length of the oil may be understood qualitatively as follows.
Assuming that in going from Cg to Cp,, fewer and fewer oil molecules penetrate into
the surfactant brush (and there are indeed strong experimental indications pointing to
the validity of this approach; see Ref. 57), then effectively the number of monomers per
unit volume, p,,, decreases and therefore, from Eqgs. (28)-(31), (Kcp),., decreases.

0.0 . , . ; . ;

log ] 0(y/mNm-‘)
o
[9,]
1

--4.0 5 ! I 1 L !
0.0 0.1 0.2 0.3

(M)

Figure 7 Interfacial tension of the planar interface between the microemulsion and the excess
phase as a function of the salt concentration for systems composed of AOT (sodium
diethylhexylsulfosuccinate), brine, and linear alkanes of varying chain length. Points are experimental
data obtained for Cs (O, @), Cip (I, W), and Cj; (&, @) linear alkanes making up the oil phase.
Open symbols refer to Winsor 1T systems; corresponding filled symbols indicate the Winsor III region
where the theory is no longer valid. The lines were calculated according to Egs. (60) and (61), the
fixed parameters listed in Table 2, and suitably chosen values of K/kT = 0.8 (Cj systems), 0.39 (Cyo
systems), and 1.2 (C;; systems). (Experimental data from Ref. 46)
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The theoretical lines in Fig. 7 correspond to suitably chosen values of the Gaussian
bending elastic modulus K. Other values of this parameter only translate the curves through
the (7, ¢sait) plane without altering their shapes. It should be emphasized that the curves are
all unique; that is, there are no values of K that allow the C;o or Cy; data to be described
by the parameters corresponding to the Cg data. It is clear from Fig. 7 that the relevant
experimental data (i.e., the ones corresponding to Winsor 1T systems) are described rather
well by the theory. Even the agreement with the Cy, data is reasonable, which is somewhat
unexpected because of the small value of X for this system (0.15kT). For these small values
of K, the Ansatz for the interfacial tension, ¢(R;), Eq. (20) (i.e., up to second order in
the inverse droplet radius), is no longer believed to be a good approximation.

Now, using the parameters listed in Table 2 and the values of K that were used to
calculate the theoretical lines in Fig. 7, the droplet radii were calculated by using
Eq. (55) with i = 3, k = 2. The results are shown in Fig. 8, together with the experimentally
determined radii reported in Ref. 48. It is emphasized that the theoretical lines in Fig. 8

Table 2 Fixed Parameters Used to Calculate the Dependence of Interfacial Tension on Salt
Concentration®

System (o0il phase) K (kT) (Keo), (KT nm™") o, (nm?)
Octane (Cg) 0.85 0.365 0.71
Decane (Cyg) 0.95 0.334 0.67
Dodecane (Cyp) 0.15 0.255 0.64

* A surfactant concentration of 10 mM in the microemulsion phase was used in all cases.
Source: Refs. 46 and 54.
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Figure 8 Variation of average droplet radius (R3;) as a function of salt concentration for the same
systems as in Fig. 7. Theoretical lines were calculated using Egs. (60) and (61) with Eq. (55) using
the same parameters as in Fig. 7. The surfactant concentration was fixed at ¢, = 60 mM, as in
Ref. 48. (Experimental points from Ref. 48)
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are calculated without any adjustable parameters.

As can be seen from Fig. 8, the agreement between theory and experiments is excellent
for the Cy, systems and quite good for the Cg systems, although in the latter case it seems as if
the difference between theory and experiments is a systematic shift parallel to the salt con-
centration axis. A possible explanation is that different batches of AOT might have been
used in the work reported in Refs. 46 and 48. Very small amounts of adsorbed contaminants
and/or hydrolysis products are expected to have a significant influence on (the chain con-
tribution to) the preferred curvature. Indeed, if a slightly larger value of (Kcj),, than
the one listed in Table 2 is used for the Cg systems (ie., 0.380k7 nm~! instead of
0.365kT nm™!), then excellent agreement is observed between theoretical and experimental
droplet radii as a function of salt concentration. Clearly the theory predicts values of the radii
that are too small in the case of the Cy; system.

We note that for the AOT systems the values of the Gaussian bending elastic moduli are
found to be significantly greater than the one that was found for the SDS plus pentanol
system (see Sec.VIL.B.1). This difference might be due to the difference in molecular
geometry between AOT and SDS/pentanol. We feel that more experimental work on other
systems should be done and that sophisticated models for surfactant monolayers at oil/brine
interfaces should be developed in order to be able to gain some understanding of this
peculiar behavior of the Gaussian bending elastic modulus.

VIil. CONCLUDING REMARKS

A. What Can Be Understood?

The concept of a competing droplet size—dependent interfacial tension and entropy of
mixing gives a good qualitative understanding of the behavior of saturated droplet-type
microemulsions (variation of average droplet size and interfacial tension with salt con-
centration). As, at a certain point, the preferred curvature changes sign, an inversion from
an O/W to a W/O system is found as well.

Quantitatively the thermodynamic formalism as worked out in Sec.V leads to good
agreement with experiments. In Sec. VIL.B.1 it was shown that the variation of average drop-
let radius with the volume fraction of the droplets can be described quantitatively by the
theory presented in Sec.V using the same set of “adjustable” parameters [Kcy and
(2K + K)] that quantitatively describes the variation of the interfacial tension y with droplet
volume fraction. The value of K¢y that has been used to describe these data could also
be verified, at least approximately, with an independent experiment using Eq. (49).

There is still good agreement between theory and experiment even when all but one
parameter are fixed (Sec. VII.B.2). In that comparison, a molecular model for the variation
of the preferred curvature with salt concentration was used. It was shown that the variation
in the interfacial tension y with salt concentration can be described well by the theory using
the Gaussian bending elastic modulus as a free parameter. Using the same values of the
Gaussian bending elastic modulus and keeping all other parameters fixed, the variation
of average droplet radius with salt concentration is also described quite well by the theory.

Interestingly, both in Sec.VILB.l, where a system composed of SDS, pentanol,
cyclohexane, and water plus salt was compared to the theory, and in Sec. VIL.B.2, where
a system containing AQT, water plus salt, and linear alkanes of different chain lengths
was evaluated, the Gaussian bending elastic modulus was found to be greater than zero.
Although in the first situation this positive sign is hardly significant (due to the experimental
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error in K of at least 10%), it definitely is in the second situation. This positive sign is not to be
expected for surfactant monolayers. We believe that this observation is a challenging motive
for further experimental work on droplet-type microemulsions and theoretical work on
surfactant monolayers at oil/water interfaces.

B. What Is Not Understood or Is Only Partly Understood?

A theory that predicts both global phase behavior and detailed properties of the phases as a
function of experimentally adjustable quantities without any adjustable parameters still
seems far away. Below we list a number of, in our opinion, important problems that need
to be solved in order to be able to proceed further.

First of all, there still are a few subtleties in the theory of droplet-type microemulsions:

1. As discussed in Sec. VI following Eq. (38), it is to be expected that the surface
charge density at the droplet interface depends on curvature owing to the fact
that the Gibbs surface does not necessarily coincide with the surface of closest
packing of the surfactant molecules. Indeed, strong indications for this effect were
found [28] for systems with SDS as a surfactant and pentanol as a cosurfactant.
However, for the AOT systems analyzed in Sec.VII.B.2, it was not necessary
to invoke such an effect. We conclude, therefore, that the magnitude of this effect
[that is, the value of ¢ as defined following Eq. (38)] depends on the type (geometry)
of surfactant being used and is (to a good approximation) absent from the type of
AOT systems studied in Sec. VILB.2. This suggests another challenging issue in
a theoretical treatment of surfactant monolayers at oil/water interfaces, in addition
to the relation between the type (geometry) of surfactant and the value of X as
discussed above and at the end of Sec. VII.B.2.

2. A consistent treatment of finite size effects and fluctuations of the volume of the
droplets (beyond capillary waves) is needed. Ideally such a theory should come
up with a value of z’. In the comparison between theory and experiments (see
Sec. VII), we find no indications for a value of z’ being different from 0.

C. Questions Regarding Non-Droplet Phases

The emphasis in this work was on droplet-type microemulsions. As promised in Sec. I'V, we
now present a short discussion on non-droplet phases.

Atthe end of Sec. III we mentioned that at zero preferred curvature and low surfactant
concentrations, a system consisting of a surfactant-rich middle phase coexisting with excess
oil and water phases (Winsor III) is found. If the preferred curvature is altered (by
temperature, salt, or cosurfactant), a continuous transition to a droplet-type microemulsion
coexisting with an excess phase is observed.

If more and more surfactant is added to a Winsor III system, the surfactant-rich phase
swells at the expense of the excess oil and water phases. From a certain point, a single
surfactant-rich phase is found. Upon increasing the amount of surfactant even further,
a first-order transition to a lamellar phase may be observed. In a special case, it has been
shown that the coexistence region between the (bicontinuous) microemulsion phase and
a lamellar phase was extended into the region where the surfactant-rich phase coexists with
excess oil and water, leading to a four-phase equilibrium: water—lamellar phase—
microemulsion phase—oil [58]. In Ref. 46, even a three-phase equilibrium, water—lamellar
phase—oil, was observed, the bicontinuous microemulsion phase apparently being absent.
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In order to be able to extend the approach described in this contribution beyond
microemulsions with a droplet structure, the (in our opinion) most important question
to be resolved is: What is the structure of the middle-phase microemulsion, and how does
it contribute to the mixing entropy of the system? An answer to this question may
also provide a (qualitative) explanation regarding the limited swellability of a middle-
phase microemulsion, that is, the observation that the surfactant-rich phase remains in
between excess oil and water in spite of the fact that the middle phase is probably
bicontinuous.

Strey and coworkers [59] showed evidence that the structure of such a middle phasein a
nonionic surfactant system resembles a “molten cubic” structure. This is a multiply con-
nected structure, and this may indeed provide an answer to the question as to why a middle
phase does not swell. It is not clear yet whether this structure is the same for all middle-phase
microemulsions.

In a rather successful phenomenological (lattice) theory put forward by Andelman
and coworkers [20], the middle-phase microemulsion is regarded as an ensemble of
noninteracting monolayers. These monolayers are characterized by their persistence length
[18], which in turn depends exponentially on the bending elastic modulus (in contrast
to polymers, where this dependence is linear). The collective character of a middle-phase
microemulsion is then taken into account by invoking an “entropy of mixing” comparable
to the Bragg—Williams approach in Ising models, also referred to as “random mixing” (i.e.,
the probabilities of neighboring lattice sites containing water or oil are uncorrelated).
As a result, the characteristic length in the system (the so-called dispersion size) is predicted
to be somewhat smaller than the persistence length. In this language, at constant interfacial
area, the swellability of a middle-phase microemulsion is determined by the dispersion size.

A related question is: Why is a lamellar phase also sometimes found to exhibit a limited
swellability [46,58]7 Is this limited swellability caused by defects? Or is it necessary to invoke
attractions between the surfactant monolayers? If attractions are responsible, classical van
der Waals attraction is not a very good candidate, as it is found that the thickness of
the water and oil layers is so great (several tens of nanometers) and the Hamaker constant
for O/W layers is so small that van der Waals attraction seems to be too weak.
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