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On the interaction of highly charged plates in an electrolyte: a correction
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It is shown that the treatment of the interaction of electric doublé layers, as
given by I. S. Sogami, T. Shinohara and M. V. Smalley (Molec. Phys., 1990, 71,
1251; 1992, 74, 599; 76, 1) contains errors and leads to incorrect results. These
authors consider the interaction of parallel, identically charged plates with a sur-
face potential that is independent of the distance between the plates. Surface
charges are considered to be smeared out, and the electric field in the solution
obeys the Poisson-Boltzmann equation. A weak attraction is found at large
distances, and a strong repulsion at short distances. The authors stress that
these results are in fundamental disagreement with results obtained in DLVO
theory.

Two types of error are described. When the plates are brought closer
together at constant surface potential, the absolute value of the surface charge
decreases. The non-electric (chemical) part of the effect of this decrease on the
free energy of the system is not taken into account and this omission results
in the calculated attraction. Furthermore, in the calculation of the free energy
of the system, the ions are considered to make a non-electric contribution to
the free energy of the order of —2QkT per ion in 0-001 M solution. Unfortu-
nately, the authors count fewer ions when the plates are close together, than
when they are far apart, and this results in a wholly artificial calculated repul-
sion. When these errors are eliminated, the treatment as set up by the three
authors reproduces the classical results, in particular a repulsion for all distances.

1. Introduction

Three papers by Smalley and Sogami, Shinohara and Smalley have appeared
recently and are cited as I [1], II [2] and III [3]. In these papers, a theoretical
treatment is given of the interaction between the electric doublé layers carried by
two parallel plates, immersed in an electrolyte solution. The interaction is found to
be weakly attractive at large separations and strongly repulsive at medium and small
separations. The treatments are based on smeared out surface charges and on the
Poisson-Bolt/mann equation for the electric potential in the solution. The authors
stress that the attractive part of the interaction is new and qualitatively at variance
with the doublé layer treatment in DLVO theory. Moreover, the repulsion at short
distances is much stronger than that according to DLVO data. The DLVO
(Derjaguin-Landau-Verwey-Overbeek) theory [4,5 a, b] explains the stability of
lyophobic colloids, as based on interparticle forces, due to overlapping electric
doublé layers and van der Waals attractions.

Unfortunately, the results obtained in these three papers are incorrect. In the
present paper the errors are pointed out in detail, and it is shown how they can be
eliminated.

First, it is worth remarking that Langmuir [6] showed in 1938 that, when two
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identical doublé layers, e.g. on parallel plates, start to overlap, the resulting force
between the plates is essentially a repulsion. The proof is transparant. For simplicity,
let us consider only l : l electrolytes. In the symmetry plane between the plates there
is no electric field, but the potential (<j>m) is finite, and it has the same sign as the
surface potential (</>s), if the potential far away from the surfaces is taken as zero. In
the symmetry plane the counterion concentration is increased by a factor
exp (+ \e<j>m/kT\) as compared to the bulk concentration at 0 = O and the coion
concentration is decreased by a factor exp (- \e<j)m/kT\). Since exp (+y) +
exp (—j) > 2, the ion concentration at the symmetry plane is larger than in the bulk
and thus the hydrostatic pressure there (Langmuir puts it equal to the osmotic
pressure) is larger than the pressure in the bulk solution, far away from any doublé
layers. Mechanica! equilibrium in the liquid requires that the difference between the
hydrostatic pressure (due to the excess ionic concentration) and Maxwell's stresses
(due to the electric field in the doublé layer) has the same value everywhere between
the plates, and therefore the net resulting pressure on the inside surfaces of the plates
is equal to the hydrostatic pressure in the symmetry plane, where the Maxwell stress
is absent. The same reasoning applies to the liquid outside the plates, from their
surfaces to infinity and thus the net pressure on the outside surfaces is equal to the
bulk pressure.

In the case of ideal behaviour of the ions in the solution (in agreement with the
use of the Poisson-Boltzmann relation), the pressure difference between the two
sides of a plate is equal to «Ofer(exp (+ \e<f>m/kT\) + exp (— e(j>m/kT\) - 2), which
is always positive, and thus the plates repel one another. In the above expression n0 is
the concentration of the l : l electrolyte far from the plates, where <f> = O, k is the
Boltzmann constant, T the temperature, and e the elementary charge.

Derjaguin [4], Bergmann, Löw-Beer and Zocher [7] and Verwey and Overbeek
[5 b] used variants on the same theme and all come to the same conclusion, a
repulsive force or pressure, quantitatively identical to Langmuir's value. Knowledge
of these early results should have made anybody suspicious of an attraction calcu-
lated for basically the same model.

Let there be no misunderstanding: that the above value for the repulsion implies
ideal behaviour of the ions in the solution, as in Van't HofPs value for the osmotic
pressure and in the Poisson-Boltzrnann equation. When correlation in the mutual
position of the ions is taken into account, this introduces an attractive component in
the interaction which may, e.g. for bivalent counterions, be stronger than the just
calculated repulsion, and lead to a net attraction between the plates [8-12]. Attrac-
tions found in this way occur at high ionic concentrations (e.g. molar), with bi- or
higher valent counterions and at small distances (order of l nm) between the sur-
faces, whereas Sogami, Shinohara and Smalley, who did not use this refinement,
calculated attractions for small ionic concentrations (e.g. millimolar) for monovalent
counterions and relatively large distances (e.g. 20 nm).

In paper I, Smalley applies the Sogami and Ise [13] approach to doublé layer
interaction for the case of a number of parallel plates. By manipulating the difference
between Helmholtz and Gibbs free energies, Sogami and Ise find an attraction for
long distance interaction, and so does Smalley. It might suffice here to refer to my
criticism [14] of Sogami's and Ise's work, which will also apply to paper I. However,
Smalley has added a derivation of his own, showing that

= AF+AE, (l)
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where AG, AF and AE are increments of, respectively, the Gibbs free energy, the
Helmholtz free energy and the energy of doublé layer systems. In his derivation of
equation (1), Smalley argues that the work PAV (P = pressure, V = volume) done
by the system must be equal to the change in electrostatic energy AE in the doublé
layers, and with PA V = AE hè finds equation (1) via AG = AE + PA V - TAS. The
correct expression should have been PAV= -Af, work done by the system at
constant P and T decreases the free energy and thus AG = O, as it should be at
equilibrium at constant P and T.

It is much more interesting to consider papers II and III, in which an apparently
valid method is used—no discussion about the difference between F and G—but
which still lead to incorrect results.

2. Model of the system, electric potentials and concentrations of ions in it

As sketched in figure l, two infinite parallel plates with uniform surface charges
and infinitesimal thickness are considered to be immersed in a l : l electrolyte with
infinite volume, x is the coordinate normal to the plate surfaces. It has its origin
midway between the plates, which are located at x = -l and at x — +1. Their
distance apart d =21. The mean local electric potential is <j>(x). A dimensionless
potential &(x) = e<t>(x)/kT is introduced, which obeys the Poisson-Bolt/mann

COUNTER
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Figure 1. The model. Two parallel infinite plates at +/ and -/, bathed in a l : l electrolyte
solution of concentration n0. The x coordinate is perpendicular to the plates and has
its origin midway between them. The surface potential of the plates is 0S (negative),
the potential at x = O is <j>m. The course of the potential is sketched in the lower part
of the figure. The coordinates +L and —L are far out of the influence of the doublé
layers. In the upper part of the figure the local concentrations of counterions ( + )
and coions (—) are sketched.
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equation

2 ( X ) , ( 2 )3 =

where the Debye length l /K is equal to

-=(et0kT/2n0e
2)l/2 (3)

K

with e as the dielectric constant of the solution, and e0 the permittivity of vacuüm.
The dimensionless potential in the solution near the plate surfaces (at ± / ± 0) is $s

(chosen negative) and is considered to be independent of the distance between the
plates, not necessarily independent of the electrolyte concentration. This comtancy
of <£>s is an essential factor in the whole treatment.

The surface charge density on the outside surfaces of the plates is Z0e, related to
the potential gradiënt by

(4)

and it is independent of the distance between the plates.
On the inside surfaces the surface charge density Z^e, is in general different from

Z0e and it obeys

- (5)
x=±(!_0}

Z0 and Z; have the sign of the surface charge.
Solution of the Poisson-Boltzmann equation between the two plates leads to

elliptic integrals. This complication is avoided in paper II by neglecting the coion
contribution to the charge density completely. However, in paper III the complete
Poisson-Boltzmann equation is used. Since this is the only important difference
between papers II and III, the discussion will be limited now to paper III.

In that paper the authors give the well known solutions of the Poisson-Boltz-
mann equation between the plates and outside the plates. We cite here the result of
the first integration between the plates, leading to

osh<I>m)1 /2 , (6)
l

where $m stands for $(x — 0), the dimensionless potential midway between the
plates. A second integration results in

- — - r~. (7)
(2 cosh $ - 2 cosh $m) V

The integral can be transformed into an elliptic integral and it gives a relation
between <I>m and the distance d between the plates.

The authors then proceed to calculate the total number of counterions (chosen
positive, since the surface charge and potential have been chosen negative) and
coions per unit cross-sectional area between the plates (Ni+ and N[_) and outside
the plates (N0+ and N0_) from x — ±lto x = ±L, where L is chosen so large as to be
far outside the influence of the doublé layers.
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The expressions obtained are, written here in slightly different notation,

and

7V0_(L) = 2«0(L-/ + -(exp(+$ s/2)-l)j. (9)
{ K J

Expressions (8) and (9) show clearly the background contributions 2«0(L - /) on
the outside of the two plates and the positive adsorption of the counterions (remem-
ber that </>s has been chosen negative) and the negative adsorption of the coions. For
the space between the plates

(l-exp(2$m)sin2^)1/2d^ (10)
^,=Sm-1exp((*s-$m)/2)

and

JVi_(/) - +2Zi + N(+(l] = 2«0/ exp (-$m)

- ̂  exp (-̂ ) f 2 (l - exp (2d>m) sin2 </>)l/2d<f> (11)
K \ 2 ) J^sm-'exp(($s-$m)/2)

where N0 and N^ are positive numbers per unit area.
The integrals in expressions (10) and (l 1) are elliptic integrals of the second kind.

These integrals are also written as:

f
J«A=sin

= E(7r/2, exp $m) - E sin-1 exp ' ~ m , exp . (12)

So far the results of paper III are correct. The difficulties arise in the calculation of
the free energy.

3. The Helmholtz free energy

In papers II and III, the Helmholtz free energy F of the system is divided into an
electric part Fel and a non-electric part F° so that

F=F° + Fe[ (13)

The non-electric part is obtained by applying the formula for an ideal gas [15] to the
small ions and, in the case of paper III, this leads to F° for the space per unit cross-
section between the plates and to FQ for the spaces outside the plates.

(14)
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= +2«0o!A;r< l + In — f 7r(-m+m~> - ] + terms
n°\ h J

not depend on d,

(15)

where m+ and m_ are the masses of a cation and an anion, respectively, and h is
Planck's constant.

This procedure amounts to assigning to each ion of mass mi in a solution of
concentration n/ a non-electric contribution to its chemical potential /u; of

\3/2

(16)

and to each solvent molecule a non-electric contribution to its chemical potential
of

(17)

in a solution containing «; solute molecules (ions) of type i and «w solvent molecules.
It is implicit in equations (14-37) that the solute concentrations are small, i.e.

ni ̂  «w We also point out here that the non-electric chemical potential of the ions
-kT In (27rm,JtT//!2)3/2/«i- has the large value of about -20fcrfor mt ~ 50g/6 x 1023

for a concentration «, corresponding to 0-001 molar.
F is found by the use of a Debye and Hückel type imaginary charging process,

starting with all ions in the solutions and all charge carriers on the surfaces
uncharged, with the restriction that during the charging process Z0, Zi; N0± and
NÏ± remain constant. Fel is then given as

<18>
where £el is the energy per unit cross-section of the electric field at the charging state
e' of the elementary charge e.

The electric free energy per unit cross-section between the plates is then found to
be

[8 exp ($m/2) , , . _,
x l ———- < E sm exp , exp $m -E(-, exp $

In ± - ^.y .
nnd nnd

(19)
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It is not necessary to write out F$, the electric free energy outside the plates since, if
L is chosen large enough, FQ is independent of the distance between the plates and,
thus, is of no importance for the interaction.

The authors of paper III (and similarly for paper II) combine the d dependent
parts of ff, F° and FQ and consider their sum minus the analogous value for d —> oo
as the free energy of interaction per unit area. Unfortunately, this is wrong. The
error has two facets.

First, the total number of cations and anions in the solutions between -L and
+L depends on the distance d between the plates. This can be checked by calculation
from the A^s given in equations (8-11), but it can also be made evident in a more
qualitative way. When the plates are far apart, the total ion content is 4n0L plus 4
times the positive adsorption of counterions per unit area, minus 4 times the negative
adsorption of coions. When the plates are (nearly) in contact the doublé layers
between the plates have disappeared and the total ion content is 4n0L plus (or
minus) only 2 times the adsorptions per unit area. In bringing the plates closer
together, counterions of two doublé layers are lost and a smaller number of coions
are 'created' in the system. The loss of counterions which each contribute « -20AT
to F° is the main cause of the calculated repulsion. It should be obvious, however,
that these ions are not really lost or created, but simply added to or taken from the
'infinite' amount of solution far from the doublé layers.

Second, the surface potential <j>s can remain constant only if the surface charge
density \Z.\e\ decreases with decreasing distance d. This can be effected by desorption
of ions carrying the surface charge or by the adsorption of counterions or by a
combination of these processes. Thermodynamic equilibrium requires that the electro-
chemical potential /i; = /x; + £;</> of the ions involved remains constant and, thus, for
the counterions fa (adsorbed) + e^ = fa (solution at <j> = 0). The electric effect of the
adsorbed ions is completely incorporated in Ff', but the non-electric (also called
chemical) effect /^ (adsorbed) — fa (solution) is not taken into account in the theory
as given in papers II and III. For each counterion adsorbed, the free energy F of the
system increases by fa (adsorbed)-//; (solution) = -e;0s = + |e</>s|. This increase in
the free energy at a decrease of Z; | and thus of d contributes a repulsion, which
overcompensates the attraction at large separations as calculated in papers II and III.

So far the arguments presented here have been qualitative or semiquantitative. The
following section shows that, after the theory is corrected for the above mentionëd
effects, it reproduces quantitatively the results as known for the interaction of doublé
layers on parallel surfaces and, in particular, shows a repulsion for all distances.

After this paper had been submitted for publication, the referees brought a paper
by Levine and Hall [16] to my attention, in which paper II was criticized and a
correct treatment of the case without coions between the plates was offered. Levine
and Hall use a model slightly different from that of Sogami, Shinohara and Smalley.
They use a finite (as opposed to infinitely large) system, require explicitly that the
total numbers of cations and anions in the system are independent of the plate
separation, they accept that the concentration far from the plates varies slightly
with the plate separation, and they argue that in the calculation of the force between
the plates it is the surface charge, that has to be kept constant, rather than the surface
potential, thus avoiding the difficulties inherent in the free energy of adsorption of a
variable number of surface ions. They still find a repulsion at small separation and
an attraction at larger separation, but they argue that the model with no coions
between the plates is no longer applicable at these larger separations.
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The present author's corrected theory stays as close as possible to Sogami et al.' s
model and, as already mentioned above, finds a repulsion for all distances.

4. Corrected theory

The model has to be completed by an indication of the mechanism allowing the
surface charge to be changed. Taking the example of n-butylammonium vermiculite,
given in paper III, dissociation of counterions from the originally neutral surface has
been chosen. With this choice the number 7V;_ of free coions per unit cross-sectional
area beteeen the plates is equal to

N{_ = n0d+2rco(d) = n0d-2\rm(d)\, (20)

where F j is the Gibbs adsorption per unit area of species j. The number Ni+ of free
counterions per unit cross-section between the plates is

Ni+ = N,_ - 2Zj = n0d+ 2rcounter(üO = n0d+2rm(d) - 2Z{. (21)

The number of adsorbed counterions per unit cross-section between the plates is
No. of adsorbed counterions r ,_ , ,„ .

Z°j ~ ' ° Zj|'Unit cross-section
The total number of counterions (free + adsorbed) per unit cross-section between
the plates is

Total no. of counterions
— rr^ - ; - = Ni+ + 2zs - 2zo = Ni- - 2Z0. (23)Unit cross-section + ° ° v '

In view of the large negative values of the Standard chemical potentials of the ions,
we have to avoid a situation in which the total number of ions considered depends on
d. We therefore choose the total number of coions per unit area (both between and
outside the plates) equal to C_ and that of the counterions to C+, where

C+ = C_ - 4Z0 (24)

For NI+ and 7Vj_ we continue to use the values of equations (11) and (12). But
N0+(L) and N0_(L) of equations (8) and (9) have to be replaced by

AW(new) = C+ - ^Vi+ - 2(Zj - Z0) = JV0_(new) - 2Z0 (25)

and
7V0_(new) = C_ - N^. (26)

For the Helmholtz free energy we can take F° and .Ff1 exactly as in paper III, and
thus use equations (14) and (19). The relevant contribution of F$, however, is
different from the d dependent part of equation (15). We have to consider that in
forming the layer d between the plates N^_ anions and cations have been taken from
the outside solution at a concentration n0 and (N^+ — N±_) cations have been gener-
aled by dissociation from the surfaces. The solvent (water) in the layer d comes from
an essentially equally thick layer in the outside solution. Thus we write for FQ

FQ = Constant minus free energy lost from the outside solution in building the

layer d

+2Ni_kTlnn0-2n()dkT}. (27)
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In addition to the three contributions from equations (14), (19) and (27) we have to
add a fourth contribution from the 2|Z0 — Z;| adsorbed counterions, taking into
account their Standard chemical potential, just as for the other counterions, and
the non-electric work of adsorption, — e<j>s = \e<ps . Thus

Fads = -2kT\Z0 - Zj| In - — j - ) +2kT\Z0 - Zi|.|*,|. (28)

Adding the contributions from equations (14), (19) and (28) and the d dependent
part of equation (27) we find for the free energy of the layer between the two plates:

- corrected = -kT
d 2^mkTI2 d

+ 2Z,kT[l + «J - %*T exp (-*„) x

exp $ s~*m , exp *m) - E(7r/2, exp $m) J

- exp - Ari+*: r In ^% - TVj.yfcr In ̂ - + 2Ar
i_fcr In —

n0d nQd «o

+2nodkT+ 2kT(Z0 - Z;)$s + 2(Z0 - Z{)kT

With the help of equation (21), N-1+ = 7V;_ - 2Zi( relations (10) and (l 1) for 7Yi+ and
JV^, and the combination of equations (5) and (6), leading to

Z; = - — (2 cosh $s - 2 cosh $m)1/2, (30)
K

•fcorrected can t>e transformed into:

^corrected = 2fcTZo In ; j +$s ~ «0*^(3 CXP (-$m) - 2 - CX

C/2

.»

(2 cosh <&s - 2 cosh <&m) ' H exp (—$m/2)
K

(l - exp (2$m) sin2 0)1/2 dc/>. (31)
exp($s-$m)/2

This is equal to exactly twice the expression derived by Verwey and Overbeek [5 b,
p. 81; see also [17], p. 253], except for the first term, proportional to 2kTZ0, which is
due to the fact that 2|Z0 counterions are provided by the two surfaces facing the
layer d. The factor two comes in because in [5 b] the free energy is calculated for half
the layer d and in this paper for the full layer.

It is not easy to see at a glance that -Fcorrectet}
 as given in equation (29) represents a

repulsion at all distances, but (9Fcorrected/cW)$s is easily found and is negative for all
distances [5 b], p. 91).



694 J. T. G. Overbeek

Now this was quite a complicated way of deriving an expression for the free
energy of two overlapping doublé layers. Much simpler derivations are possible, but
here it was our purpose to show that the method proposed by Sogami, Shinohara
and Smalley, if worked out correctly, leads to the correct and well known value for
this free energy.

5. Conclusion

The attraction found between parallel plates, covered with identical doublé
layers, is not a consequence of the model but is due to the omission of the condition
for thermodynamic equilibrium between surface charge carriers and ions of the same
type in the solution. In the example chosen, it is the equilibrium between counterions
bound to the surface, that decrease the surface charge, and free counterions. The
repulsion found at medium and short distances is incorrect, due to allowing ions to
enter or leave the system, when the interplate distance is changed. A correct calcula-
tion of the free energy of the model used by Sogami, Shinohara and Smalley leads to
known results and, in particular, to a repulsion for all distances between the plates.

I am grateful to Dr M. V. Smalley for providing me with preprints of papers II
and III and for an interesting exchange of letters. I thank Professor H. N. W.
Lekkerkerker for his constant interest, Ms Toni Vos for typing the manuscript,
and Mr. J. den Boesterd for preparing the figure.
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