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Abstract  

The free energy of the electrical double layer is expressed as the sum of the electrical field energy, 
the contribution of the entropy of the distribution of ions and, where applicable, the chemical free 
energy due to the preference of potential determining ions for the surface. General expressions are 
derived without the use of a charging process. They are given for arbitrary geometry in a form 
that is easily adapted for computations. The Poisson-Boltzmann equation is assumed to be valid. 
It is shown that the results are equivalent to those obtained by the use of charging processes. A 
table is given in which the signs of the various contributions to the free energy of interaction of 
double layers are given. Two quantitative applications are treated, one showing that the entropy 
contributes more to the electrical free energy of a double layer than the field energy. In the second 
example the energy/entropy method is applied to calculate the interaction of particles with dif- 
ferent surface potentials. 

INTRODUCTION 

Most authors have dealt with the free energy of double layers and their in- 
teraction with the aid of imaginary charging processes (see: Verwey and O- 
verbeek [1], Overbeek [2] ) or via the integration of the force of interaction 
(Langmuir [3] and Refs [1,2] ). Only exceptionally has this free energy been 
treated as the sum of energy and entropy contributions, e.g., by Marcus [4], 
who considered the properties of polyelectrolytes, and by JSnsson et al. [5,6 ], 
who applied this method to amphiphile-water systems. 

It may be of some interest to formulate energy and entropy separately, and 
show how this can be applied to the interaction of colloidal particles. Apart 
from offering an independent way of treating double layer free energies without 
the use of the always somewhat artificial charging process, it will stress the 
(sometimes overwhelming) importance of the entropy explicitly. 

Three elements have to be considered: (1) The electrostatic energy of the 
surface charges and the bulk charges. (2) The entropy involved in the uneven 
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distribution of the ions. (3) The "chemical" (i.e., non-electrical) preference 
of the ions forming the surface charge for the surface over the bulk or the 
tendency to electrolytic dissociation of groups in the surface. This last contri- 
bution may be omitted in dealing with interactions in which the surface charge 
remains constant, as, e.g., in clays, where the crystal lattice carries a perma- 
nent  charge, in completely dissociated polyelectrolytes, such as NaPMA, or in 
micelles such as NaDS, or in some cases of rapid interaction as in Brownian 
encounters, during which the surface charge cannot  adapt rapidly enough. 

Model, terminology and symbols 

We consider particles of arbitrary size and shape embedded in an aqueous 
electrolyte solution. In order to avoid unessential complications we shall limit 
our t rea tment  to purely diffuse double layers, obeying the Poisson-Boltzmann 
equation. The surface of the particles with surface elements dA carries a sur- 
face charge density, a, and it has a potential, ~o. Different particles may have 
different values of a and (00. The electrolyte solution with volume elements, 
dV, has a charge density, p, and a potential, ~, that  vary with position. It con- 
tains ions of types, i, with charge number, zi (sign included), in mole fraction, 
xi, and concentration, ni ions per unit  volume. The solvent, water, is indicated 
by the subscript, w. The system as considered is electroneutral and it contains 
positions far away from all particles, indicated as infinity ( ~ ) ,  where ~ and 
all its spatial derivatives are zero, and concentrations and mole fractions are 
n~o, nwo, Xio, Xwo respectively. 

Dimensionless potentials are defined as ~/= eq~/kT and ~o = e~o/kT. The di- 
electric constant  of the solution is er, the permittivity of the vacuum is ~o. 

Furthermore,  the Debye length, K-1, is defined through 

Zn oz e2 
~:2_ , (1) 

e, eo k T  

and finally 

a= - ereo gradn ~ = - ereo(d~/dn) (2) 

at the surface, where n is the normal on the surface, directed into the solution. 

The energy 

The electrostatic energy, Ue,, can be described as the field energy in the 
solution, or, alternatively as the energy of the surface charges and bulk charges 
in the local potential field. The two descriptions can be t ransformed into one 
another  by using Green's theorem in the form 
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- f aogradnbdA= f (ad i v gradb+ grada .g radb )dV  
A V 

(3) 

where a and b are scalar fields, vanishing at infinity and having values ao and 
bo at the surface A. gradn is directed from the surfaces into the volume V. 
Furthermore Eqn (2) for the surface charge density and Poisson's equation, 
Eqn (4), for the bulk charge density are needed. 

div grad q~= -p/er¢o (4) 

Then 

Er G0 
Uel = field energy = ~ - ~  (grad ~o)2dV= (with Green's theorem) 

V 

Er GO 
= -  2 Jq~°(cgq~/cgn)surfdA-~-~-~-?f ~ d i v g r a d ~ d g =  

A V 

[ with Eqns (2) and (4) ] = + ~ a~o dA + ~ p~ d V 
A V 

(5) 

The relation between the potential, the charges and the space coordinates 
has to be obtained by solving the Poisson-Boltzmann equation, Eqn (6), with 
the relevant boundary conditions at the surfaces and at infinity. 

~zieni ~,zienioexp(-zie~/kT) 
P i i div grad ~ = - - - 

Gr G0 ~r {~0 Gr G0 

(for a single z-z electrolyte) = + 2zeno sinh z~]= 
ErE0 

(6) 

The entropy 

The entropy difference, AS, between the ion distribution in the double layer 
and the same ions and solvent molecules in the solution at ~ = 0  is given for 
dilute electrolyte solutions by 
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1-- ~i Xi "} 
A S = - k f ~ n i l n X i  + n ~ l n ~ ~ d g  ~- 

JV [. i Xio 
t 

-k~{~(niln~o-n~+n~o)}dV 
V 

=+kf ~n~o +exp(- 1]}dV i [zi~]exp(--zi~) z i~)--  
V 

(7) 

In the last transformation the Boltzmann relation has been applied. With the 
aid of 

p= ~zieni -- -ereo div grad 
l 

and 

f{~r ~0 d iv  g r a d e f l d ~ ' = - f p d ~ = ~ n i o e e x p ( - z i ~ ) d ( - z i v / )  
o o o 

= ~, nioe{exp ( -- zi ~) -- 1} 

Eqn (7) can be transformed into 

- T A S = + e r E o f ~ d i v g r a d ~ d V - e r e o f d V f d i v g r a d ~ d ~  
v v o 

(8) 

The electric free energy 

The Helmholtz free energy, Eel , of the electric double layer is found by com- 
bining Ue, and -TztS.  Fe~ is equal to the Gibbs free energy, Gel, if the volume 
of the solution is not affected by the redistribution of the ions. Should the 
volume of the solution be affected by the charge distribution, a (small) PAV 
term has to be taken into account and Gel rather than Fel is the required quan- 
tity. See Fowler and Guggenheim [7 ] who have dealt with this point in con- 
nection with the ionic atmospheres in the Debye-Hiickel theory of electrolytes. 
We shall neglect this fine point here and just consider incompressible systems. 
Then, with Eqns (5) and (8) we have 
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F~l __ Gel - TAS=ereO ~[ (grad (fl)2 
2  -fdiv 

0 

=E~eo grad tp d(grad tp) + f tp d (div grad tp) dV 
0 

(9) 

The integrations from 0 to ep are to be understood in the sense that at ~ = 0 all 
surfaces are uncharged and the potential is zero everywhere, whereas at ~-- 
all surfaces have their final surface potential ~o, not necessarily the same for 
all surfaces. The Poisson-Boltzmann equation, Eqn (6), remains valid at all 
stages. To show this more explicitly we introduce an integration variable, a,  
going from 0 to 1 for the whole system and the surface potentials change from 
0 to ~Po when a goes from 0 to 1. Then 

1 1 

! {  fogra d O(gradq~) f 0(divgrad~)d~}d V Eel =ereo (0 ~ d a +  q~ cga 
0 ~ =  O r = 0  

1 

= er e0 ! { ! ( g r a d  ~ grad~--~0~ + (P div grad~)do~}dV= 

1 

with Green's fo rmula :  er eo f f~surf( 0 _ 0 ~  
On 00~ ]surf dOLdA 

A 0  

1 a f i n a l  

A ~ = 0  A a = 0  

(10) 

and this is the same expression as found with the imaginary charging process, 
in which a goes from zero to its final value. 

Not only can Eqn (10) be derived from Eqn (9), but the reverse is also 
possible. The only requirements are that, during the charging process implied 
in f~surgia, the solution part of the double layer is in thermodynamic and, thus, 
also in electric equilibrium. Poisson's law must be obeyed at all stages, there 
must be a well-defined relation, p=p(~) between the local charge density and 
the local potential, but this relation may deviate from the Boltzmann relation, 
fl = ~ z ~ e n i  = Xzienioexp ( -- zi~) as used in the transformation of Eqn (7) into 
Eqn (8). 

Therefore, it follows that the relation, implied in Eqns (8) and (9), 
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V 0 

remains valid, even when the entropy deviates from Eqn (7) and the ion con- 
centration distribution deviates from the Boltzmann relation, and thus Eqn 
(8a) has a wider validity than the derivation of Eqn (8) from Eqn (7) might 
seem to imply. 

An independent method to derive Eqn (8a) is to state that  during the charg- 
ing process, f~surfda, the solution part  of the double layer arranges itself au- 
tomatically, i.e., with zero contribution to the free energy, and thus the change 
in entropy and the electrical work done just compensate one another or 

. . . . .  , tio  0 

0 

The chemical free energy 

Fel and f~surfda in Eqns (9) and (10) cover only the electrostatic energy and 
the entropy of the ions as mentioned in the introduction. When the surface 
charge, composed of one or more types of ions, j, is in equilibrium with these 
ions in the solution by adsorption (or by dissociation), the free energy also 
contains the "chemical" term, Fchen~ 

f final 

fchem = fdA ~ { ]~. A~.~j ~ } = f dA { j~. A].~jC. } (11) 
A o A 

where Fj is the amount  of j  adsorbed per unit  area and A/~j is the difference in 
chemical potential of j between the surfaces and the solution. The second 
equality in Eqn (11) is valid when zi/~ i is independent of Fj, e.g., because the 
chemical potential of the potential determining ions, j, in the surface is deter- 
mined by and equal to the chemical potential of these same ions in the sub- 
strate of the surface, as with metals, sparingly soluble oxides or salts. Since at 
equilibrium the electrochemical potentials have to be equal between surface 
and solution, 

A#j + zjeqJo =0  (12) 

With this expression and with a= ~zjeFj Eqn (11) is transformed into 

Fchem w -- f 0"~00 dA (13) 



67 

With application of Eqn (2) and Green's theorem, Eqn (3), this can also be 
written as 

Fchem = - -  (~r~0 f d V [ ¢  div grad (0+ (grad (a) 2 ] (14) 
V 

Splitting of the chemical free energy, Fch~m, into energy and entropy contri- 
butions cannot be done a priori, but requires experimental input, e.g., in the 
form of the heat (enthalpy) of adsorption or as the temperature dependence 
of the point of zero charge ( a=  0). 

If the surface contains a limited number of adsorption or dissociation sites, 
the entropy due to the distribution of the charges among these sites can be 
calculated, as already shown by Payens [8] in 1955, by Chan and Mitchell [9] 
and, very recently, by Stigter and Dill [10], but the entropy part contained in 
the standard free energy of adsorption or dissociation is just as inaccessible a 
priori as when Apj is independent of the surface charge. 

The total free energy 

The total free energy, F t o t ,  is found as the sum of Fet [Eqn (9) ] and Fchem 
[Eqn (14)] 

ftot~fel'~-fchem~-~r~ofdYE(gra~d2 ~)24t-fdivgrad~d{o ] ( 1 5 )  

V 0 

or alternatively as the sum of Eqns ( 10 ) and ( 13 ) 
cr f inal  q)O f inal  

Ftot:~ f ~surfd~rdA-f(Psurf~dA:-f f ffd~surfdA (16) 
A 0 ~ 0  A Afpsurf ~ 0  

In the derivation given in Eqn (10) we demonstrated the relation between 
the energy/entropy method and the charging process in which the surface is 
charged. 

Similarly Eqn (15) for Ftot can also be found with the use of the Debye- 
Hiickel type charging process, in which the charge of all ions in the system is 
gradually increased from zero to the final values. Proof of this statement is 
given in the Appendix. 

What is the use of this approach? 

In the first place the Eqns (5) for Uel, (7) and (8) for - T A S ,  (9) for F el, 
(14) for Fchem and (15) for Ftot~l have been derived without the use of charging 
processes. They form suitable starting points for computations, assuming that  
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the potential q is known as a function of the spatial coordinates after solution 
of the Poisson-Boltzmann equation. 

Furthermore,  Ue~ and - TAS are both positive. They  work together and are 
obviously of the same order of magnitude. The driving force for the formation 
of the double layer is the negative chemical free energy or the given presence 
of a fixed surface charge density, a. 

Finally in the interaction between particles with a double layer, [Fel-- Fe, ( ~ )  ] 
at constant  surface charges or [Ftot-Ftot ( ~ )  ] at constant  surface potentials, 
where ~ means tha t  the particles are far apart, we shall find examples in which 
the interaction is mainly due to the entropy, other examples where it is mainly 
due to Fch~m, but  only very few where the energy, U~I, makes a sizable contri- 
bution to the final effect. Actually, in most cases the energy of interaction and 
the free energy of interaction differ even in sign. 

As an illustration we present  a table (Table 1) in which the signs of the 
various contributions to the interaction are given for a number of typical cases. 
We shall not go into all the details of the table. The main effects should be 
obvious enough. In a following paper a series of examples will be worked out 
quantitatively. In a later section of the present  paper two quantitative appli- 
cations are presented. 

T A B L E  1 

Sign of the var ious con t r ibu t ions  to the  free energy of  in teract ion ( + is repulsion,  - is a t t r ac t ion)  

between two particles wi th  double layers 

Paramete rs  t ha t  are kept  cons t an t  Con t r ibu t ions  due to a 

Ue, - T A S  Fel Fchem g to t  

~01 ~ ~02 

0"1 = O" 2 

q~o2 > ~o, > 0 \ 
~o2 < q~o~ < 0 
0 " 2 > 0 " 1 > 0  

a 2 < a l < 0  

~o2 > 0 > tpol 
q~o2 < 0 < q~o~ 

¢o2 = - qo~ 

a 2 > 0 >  al } 
a 2 < 0 < a l  

0"2= --0" 1 

_ _ _ @ + 

- G + n . a .  n . a .  

large separa t ion  - - - • + 
small separa t ion  + - + G - 
large separa t ion  - ~ + n.a. n.a. 

small  separa t ion  - @ + n.a. n.a. 

large separa t ion  + + + G - 
small  separa t ion  + - + G - 
large separa t ion  + + + G -- 
small  separa t ion  + - + O - 
large separa t ion  O G - n.a. n.a. 
small separa t ion  - ~ + n.a. n.a. 

large separa t ion  O Q - n.a. n.a. 
small separa t ion  O O + n.a. n.a. 

aThe main  con t r ibu t ions  to the  in teract ion for the var ious cases are indicated by  circles a round  
the + or - signs. Only wi th  cons t an t  charges of  opposi te  signs does the energy of  interact ion,  UeL, 

play a significant  suppor t ing  role. 
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Gel is a free energy 

The field energy, Ue, is only a pure energy in the primitive model, in which 
the solvent is considered as a structureless medium with a dielectric constant, 
er. The molecules of the solvent, however, are ordered by the electric field and 
therefore Uel is a free energy, containing both energy and entropy contribu- 
tions. In water the entropy part  is quite large, as is well known from the appli- 
cation of the theory of Debye and Hiickel to the heat of dilution of electrolyte 
solutions. 

Since the electrical free energy of a double layer with surface charge density, 
a, can be written: 

Eel f((y2) 
and KG =const(er/T) 1/2 (17) 

A - 2er ~ot¢ 

the energy of the double layer, Ud~, becomes 

gea=Fel__TC3Fel f(~2) ( TOC.r'~ 
OT--4ereOK 1 + ~ )  (18) 

and the entropy contribution, - TSdl, to the free energy is 

OFel f(t7 2) ( T 0'r~ 
- T S d l = T  0 T - 4 e ~ e o ~  1 er OT] (19) 

Now for water at 25°C (T/G) (Oer/OT) = - 1.35 and this results in Udl being 
much smaller and of different sign from Uel and - TS,r being more than twice 

- TAS. 
Nevertheless, the values for Fe, calculated with primitive model equations 

for U~l and - TAS are correct. 

APPLICATIONS 

We shall now discuss a few applications showing how the free energy of the 
double layer and of double layer interaction is composed quantitatively from 
energy and entropy contributions. 

Single flat double layer 

For a unit  area of a single flat double layer in a 1-1 electrolyte of concentra- 
tion n 

Ue' = "-2-- kdx]  2 
x=O ¢Z=qo 

(20) 
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where x is the coordinate perpendicular to the surface. For this case the Pois- 
son-Boltzmann equation is easily solved, giving as the first integral 

dq_ _ 2KkT sinh e~ (21) 
dx e 2kT 
and 

Ue'----2er E° ~ ) 2 (  c°sh 2kTeq~°--1~] 

For - TAS we start with Eqn ( 7 ) that we rewrite as: 

-TAS=2nkT f (~,sinh ~,-cosh ~/+l)dx 
x = O  

(22) 

(23) 

Using Eqn (21) we transform Eqn (23) into 
~ = 0  

-TAS= -~2nkT ~ ~sinh~-c°sh~'+lsinh (~/2) d(~)  
ep = epo 

. . 2 q~=O 

= 2er eo/~(~) ~ [sinh (~/2) - ~, cosh (~'/2) ]d(~'/2) 
tp = tpo 

2 

----2ereOK(~) [3--3 cosh (~o/2)+~'o sinh (~o/2)] (24) 

Equations (22) and (24) add up nicely to give the well-known value for Fel 

Fel= f ~0da=withEqns (2) and (21) 
~ = 0  

: 2ereoW(~)2 [ 2 -  2 cosh ( ~ ) +  ~o sinh ( ~ ) ]  (25) 

In the limit of small surface potentials 
2 2 [" kT'~ ~0 P 2 a2 

E e l  ( ~ 0  --~ 0 ) ---- e r  ~o ~ )  2 - ~ o  -- 2EreOK, 

Uel----~ a n d -  TAS~F2 el (26a) 

whereas for very high surface potentials 
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Fe](~Oo-OOo)=Pexp(~Vo/2){~,o-2...}=2k~Te(ln akT  1~ 
~ P - -  ] (26b) 

1 -- 2e -  ~o/,'~ ~ .  _ 3 + 6 e  ~,o/2 

Gel  (¢flo ---~ OO ) --~ F e l  2 + 4e_,~o/2 and - T z J S = F e I ~ o  - 
~Uo- 

In words: at low potentials energy and entropy contribute equally to the free 
energy of the double layer, whereas at high potentials the entropy ( - TAS) 
contributes more than half, in the limit nearly all of be]. 

Two particles interacting at constant, but different surface potentials 

As a second application we consider the interaction between two parallel flat 
surfaces of unit  area at constant  surface potentials ~0Ol and ~o2 (which may be 
high) in a 1-1 electrolyte of concentrat ion n. The distance between the sur- 
faces is H, the distance from the left hand surface is x. The free energy of 
interaction, Finter is Ftot [H, Eqn (15) ] - Ftot (H-~ oo). So 

F i n t e r ( p e r u n i t a r e a ) = - ¢ r e o ] | ~ - ~ }  + d(0 d x - F t o t ( g - ~ )  (27) 
0 0 

When H is finite, the Poisson-Boltzmann equation, Eqn (28), cannot be solved 
explicitly, but  a first integration is possible, leading to Eqn (29) 

d2~ - x 2kT sinh e_~_¢ (28) 
dx 2 e k T  

e d{o d~v 
- -  - + (2 cosh ~v-2b) 1/2 (29) 

k Tx  dx - d ( ~cx ) 

where b = cosh ~min if ~V has a minimum between x = 0 and x - -H,  otherwise 
- ~ < b < cosh ~'Ol, when we choose 0 < ~vOl < ~'o2. 

The relation between b (or ~Vmi,) and H is given by 

~vol ~'o2 

KH= (2 cosh ~ - 2  cosh ~'min) 1/2 t- (2 cosh ~]--2 cosh ~¢min) 1/2 
~min ~min 

or, when there is no minimum in ~, 

9/O2 

KH= (2 cosh ~ - 2 b )  1/2 (30b) 

With  the use of Eqns (28) and (29) Ftot (H) can be t ransformed into 
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{, kT~2~ ~i, ( ~1/2 
Ftot(H)=-ereoK~e- ) ~ J 2 cosh ~ , -2  c o s h  ~/min) d~,+ 

~/mln 

(//O2 

f similar+ (cosh ~Ymin--1)KH} 
~fl'min 

(31a) 

or, without a minimum in ~] 

Ftot (U) -Er EO ~)2{~'i2( 2 cosh ~1/2 / = u./-2b) d~l/-~-~b-1)KS} (31b) 

The two types of integrals occurring in the equations for KH and Ftot can be 
transformed into elliptic integrals [11,12], but they can be dealt with more 
easily by numerical integration. 

Ftot (H- ,  oo) is simply the sum of two separate double layer free energies and 
is known or, if desired, is easily found from Eqn (31a) with ~min=0 

2 
Ftot(H--~oo)=-~r~OK(~) {4cosh--~2fl--]-4cosh~-8} (32) 

By choosing a series of suitable values of ~/]rain or b, respectively, and calcu- 
lating for each of these •H [Eqn (30)] and Finte r [Eqns (27), (31) and (32)], 
a plot of Finter against KH can be made. 

With the use of Derjaguin's Eqn (33) [13] the free energy of interaction, 
Finter, between two spheres with radii al, and a2, surface potentials {0ol and {0o2 
and shortest distance between the surfaces, Ho can be found with a straight- 
forward numerical integration 

oo 

Fint . . . .  ph . . . .  - 2nala~ f Finter ((//o 1 ,~o2 ,H)dH ( 3 3 )  al +a2 Ho 
In Fig. i results of this program are shown for two typical cases together with 

results obtained with the linear approximation [sinh (eq~/kT) in Eqn (28) 
replaced by elo/kT] as treated in 1966 by Hogg et al. [ 14 ]. It is remarkable how 
good the linear approximation is, even at surface potentials of 50 and 100 mV. 

It should be mentioned that  Derjaguin [15] in 1954 has treated the inter- 
action of particles with different surface potentials based on the force (not the 
free energy) of interaction, both for high and for low surface potentials. 
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Fig. 1. Free energy of  interaction of two spherical particles each with a radius of 40 nm in units 
k T a t  25 ° C. The upper two curves refer to dimensionless surface potentials  2 and 4 (51.4 and 102.8 
mV, respectively) the lower two curves refer to ~o1= 1 and  ~o2=2. During the interacting the 
surface potentials  remain constant.  Drawn lines refer to use of the complete Po i s son-Bol tzmann 
equation, broken lines to the linear approximation. Ho is the distance between the surfaces on the 
line connecting the centers of the spheres. 

CONCLUSIONS 

Considering field energy and entropy separately forms a useful approach to 
problems involving the free energy of double layers and double layer interac- 
tion. It avoids the use of charging processes. It shows clearly the importance 
of entropy contributions and the relative lack of importance of the energy. It 
forms a good basis for formulating and computing double layer free energies. 
The equations so obtained are equivalent to those obtained by the Debye and 
Hiickel type charging process [d~/~; see Appendix and Eqn (15) ]. Especially 
when the Poisson-Boltzmann equation cannot be solved explicitly, as in most 
non-linearized cases the method is superior to the use of the charging process 
in which the surface is charged stepwise (f¢oda or - f a d ¢ o ) .  
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APPENDIX 

In order to show the equivalence of the energy/entropy method and the De- 
bye-Hiickel type charging method we write [ 2 ] 

1 1 1 

Ft°t= o vP'O'dV+JTJaO°dA+Jo~Z~eo A ~-~ (A1) 

The charging process involves charging all ions simultaneously in steps zied~ 
and also increasing the preference of the potential determining ions, j, for the 
surface, expressed as 4u~ =p~ (surface) - tt~ (solution). The primes indicate that 
the primed quantities are at the stage ;t of the charging process. Equilibrium 
between surfaces and solution requires that at all stages 

Att~ + zje,~0'o = 0 (n2) 

At stage 2 the Poisson-Boltzmann equation runs 

div grad 0' P' --zie~nio ( z i e ~ ' ) = ~ f ( ~ O , )  (A3) 
= - - e r e 0 ~ - - - - ~ / "  ~ exp kT 

By introducing 

0'd~ = ~  (~0 ' )d~- ; t~d~  (A4) 

and applying Eqns (A2) and (A3), Eqn (A1) can be transformed into 

O '  Ftot=-ereo fdV ~ f(~O')d(~¢')+ereo fdV ~ divgradCf o-~d~- 
V )-O' = 0  V ~ = 0  

~ .=1  

a ~ - c ~  (A5) 
A )~=0 

Realizing that f(q) =div grad q, replacing ( ~ ' )  by ~ in the first integral, and 
combining the last two integrals by Green's theorem [Eqn (3)], while using 
Eqn (2) for a' we find 

¢ 2 = 1  

Ftot--=-ereofdY(fdivgradOdO+ ~ grad O'~ (grad 0' )d~.) 
V 0 R : O  

=-¢reo~dV(~div grad OdO+ (grad 0)2)2 (A6) 
V 0 
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which is identical to the form derived from energy and entropy and given in 
Eqn (15). 
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