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After a qualitative and quantitative comparison of various methods for 
calculating double-layer interaction the results of Hogg, Healy and 
Fuerstenau and those of Barouch, MatijeviC and coworkers on the energy 
of interaction between unequal spheres are dealt with. These results show 
unexpectedly large differences. The cause of these differences is found and 
after application of a necessary correction to the results of Barouch and 
MatijeviC the remaining differences are small, even for moderately large 
surface potentials. 

In 1966 Hogg, Healy and Fuerstenau’ (HHF) published a paper in which a theory for 
the double-layer interaction between spheres of unequal size and unequal surface 
potential is given, using the linear approximation of the Poisson-Boltzmann equation 
(PB equation), valid for small potentials, smaller than 25 mV. They derived a fairly 
simple equation for the free energy of interaction, which appeared to give quite 
reasonable results, even at potentials much higher than 25 mV. In 1978 Barouch, 
Matijevid, Ring and Finlan2 (BMRF) analysed the same problem, now using the full PB 
equation, and found results which differed rather markedly from those of HHF. This 
paper was challenged by Chan and White3 (CW), who suggested that the main cause of 
the difference between HHF and BMRF was due to an inappropriate truncation of a 
series expansion used by BMRF. Chan and Chan4 (CC) obtained a few exact numerical 
solutions of the full PB equation, compared these with the HHF and BMRF results and 
concluded ‘that any disagreement between . . . HHF and BMRF must be due to errors in 
the BMRF result ...’. 

Then in 1985 Barouch and Matijevid published three papers, one with Wright as 
coauthor (BM, I,5 BMW, 11,‘ BM, III’) in which they gave a new analysis of the 
expression for the double-layer interaction energy already derived by BMRF2 and found 
large deviations from the HHF results, in particular at separations between the spheres 
smaller than one Debye length ( l / ~ ) .  They reject the criticism by CW3 and CC4 
explicitly. Very recently Barouch, Matijevid and Parsegian’ (BMP) described their earlier 
results as ‘an exact solution for the force between spheres.. . ’ and mention ‘at 
intermediate separations . . . where force and energy go through extrema . . . a qualitative 
difference’ is found with HHF. 

This is a very unsatisfactory situation. On the one hand there is the critique by Chan 
and coauthors and the general feeling that HHF is correct at low potentials and still quite 
a good approximation at potentials of ca. 50 mV. On the other hand, the results of the 
elaborate and intricate calculations of Barouch, Matijevid and coauthors show in quite 
a number of cases ‘a qualitative difference’ with HHF. I therefore decided to check the 
problem again and try to understand where the difference between BM and HHF came 
from. However, before considering the papers by BM and HHF in detail, a few general 
remarks are in order about some aspects of the problem, that evidently are not always 
fully recognized. 
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Fundamental Difficulty of the Problem 
For two spheres in proximity no analytical solutions of the PB equation are known, not 
even for the linearized case, let alone for the full equation. Only approximate analytical 
or numerical solutions can be used. Moreover, for two particles with surface potentials 
of the same sign but different magnitude, the double-layer interaction changes from 
repulsive at large separations to attractive at short distances, owing to the fact that the 
proximity of the surface of high potential causes the charge of the low potential surface 
to change sign. 

Remarkably enough the problem was already very fully treated by Derjaguing in 1954 
but, unfortunately, this paper has not received as much attention as it deserved, possibly 
because in the words of HHF ' the solutions are extremely unwieldy '. 

Methods for Calculating Interaction 
The force on a particle can be seen as the sum of the Maxwell stress of the electric field 
and the hydrostatic pressure due to the increased concentration of ions (see Verwey and 
Overbeek, VO'O'). Derjaguing described the force for parallel flat surfaces and for 
convex surfaces with large radii of curvature, using the full PB equation, but also giving 
simplified equations valid for low surface potentials. 

The free energy of interaction can be found by integrating the force from infinite 
separation to the actual distance between the particles (VOIOb), but also as the difference 
between the free energies of the double-layer system at the actual and at infinite distance. 
The force is completely determined by the electric potential field, independent of the 
boundary conditions (constant surface potential, constant surface charge or other), but 
the change of the force with distance does depend on these boundary conditions. The 
free energy depends on the choice of its zero and on the boundary conditions. 

The free energy of the double layer contains four contributions. These are: the 
chemical free energy (due to adsorption or desorption) of the surface charge, the 
electrical energy of the surface charge, the electrical energy of the space charge in 
the solution and the entropy contribution due to the uneven distribution of ions in the 
solution. The free energy is most easily found by the use of an imaginary charging 
process, thus limiting the calculation to the surface charge or to the bulk charge, but 
including all the other contributions automatically. 

If the particle charge, Q, is constant, the chemical term may be dropped and the free 
energy is simply J v/,(Q) dQ, y o  being the surface potential (see Overbeek, Oila). For low 
surface potentials Q is proportional to y o  and the free energy becomes +;Qv/,. 

At constant surface potential, where the surface charge changes with the configuration, 
the chemical term has to be added, and the double-layer free energy, F, becomes 

~ ~ l i n a l  Q Qfinal 

ryodQ+-Ap(surface-bulk) = [yodQ-y0Q = -s Qdv, (1) F =  Jo e 0 

where e is the elementary charge, Ap is the difference in chemical potential of the 
ions responsible for the surface charge and, since equilibrium is supposed to occur at 
wo, A p  = - ely, (see 01' b) .  For low surface potentials F becomes - ;Qv/,. The equality of 
the absolute values of the linearized double-layer free energies at constant charge and 
at constant potential has in some cases led to confusion. 

For surface charge adjustment with a limited number of adsorption or desorption 
sites, equations become slightly more complicated because then Ap is not constant. We 
shall not consider this case here. 

HHFl used F = -;Qv/,, and since Q = capacity x yo, F = -(geometrical factor) x 
E, E, v/i, where E, is the relative dielectric constant of the solution and E, is the permittivity 
of free space. 
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Table 1. Double-layer free energies per unit area divided by E , E , K ( ~ T / ~ ) ~  for a single flat double 
layer according to three different approaches. 

z = ey/,/kT 0.5 1 .o 2.0 4.0 

linear approximation, - iz2 - 0.125 -0.5 - 2.0 - 8.0 
(used by HHF) 

(exact equation) 

(equivalent to BMRF) 

-JQdy/,+-4(~0sh~/2- 1) -0.125 65 -0.510 50 -2.172 3 -11.048 8 

-iJ y/,adA = -iQlyo+-z sinhz/2 -0.126 31 -0.521 10 -2.350 4 - 14.507 4 

BMRF2 state in their eqn (2.3) that the ‘electrostatic energy’, E = + a J  yo  adA (at 
constant ly, equivalent to ily, Q), where a is the surface charge density and A is the area 
of the surface. Then they replace CT by - E,  E, ay /an ,  where awlan is the normal derivative 
[their eqn (2.4)] and they set 

leading to their eqn (2.6): 

This equation should have contained a choice of sign, f , since the normal derivative in 
eqn (2.4) is the change of ly when going from the surface to the solution (not to the 
interior of the particle), and obviously this change may be either positive or negative just 
as a may be either negative or positive. The omission of the f sign in eqn (2.6) together 
with the later limitation to positive surface potentials then leads to the replacement of 
E = +tS ly, adA by E = the equivalent of --iJ yo  adA (see also CW3), which is then 
used in all further calculations (BMRF,2 BM5-’). They calculate the potential gradient 
at the surface (proportional to a) using the full PB equation. At low potentials their 
results should be nearly identical to those of HHF, whereas at high potentials a 
difference should show up, but then - t J  +Y, adA (= -~Qly,) is not necessarily closer to 
-J Qdly, than the formula of HHF. 

As a simple illustration we calculated the double-layer free energy for a single flat 
double layer, where exact equations are available, with the three different approaches 
(table 1). The correct values lie nearly halfway betwen the HHF and the BM 
approximations, but slightly closer to HHF. 

Potential us. Distance for Various Separations 
In this section we shall mainly discuss the case of two parallel flat double layers. 

When two double layers with equal surface potentials overlap, the potential has a 
minimum halfway between the plates. When the two surface potentials have the same 
sign, but a different magnitude, and the distance between the surfaces is not too small 
a similar minimum occurs, not half way, but closer to the surface with the smaller 
potential. This is illustrated in fig. l(a). The figures have been drawn using eqn (2) of 
HHF, but the numbers would not be greatly different if the full PB equation had been 
used : 

lyol sinh K ( H -  x) + lyo2 sinh 
sinh K H  w =  
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Fig. 1. Dimensionless potential, ety/kT, vs. dimensionless distance, K X ,  for two parallel flat 
surfaces at dimensionless surface potentials 1 and 2, respectively. Four typical cases are presented. 
(a) Fairly large separation; minimum in the potential between the surfaces; both surfaces carry 
positive charge; repulsion. (b) Shorter separation; minimum in the potential has just reached the 
low potential surface; no charge on surface 1 ; maximum repulsive force. (c) Separation so small 
that the extrapolated potential goes asymptotically to zero at K X  + - co ; negative charge on surface 
1 ; force between surfaces zero. (d) Separation still smaller; extrapolated potential goes to - co at 
finite negative FCX;  strong negative charge on surface 1; free energy of interaction goes through 

zero. 

Table 2. Values of KH for which various quantities change sign 
(a) based on eqn (2), the linear approximation 

1+6 1.5 2.0 3 .O 5.0 general W02/  W O l  

charge on surface 1 (26); 0.962 1.3 17 1.763 2.292 arccosh ( V / ~ ~ / V / ~ ~ )  

force is zero 6 0.405 0.693 1.099 1.609 In (tyo2/tyOl) 
is zero 

free energy of d2/2 0.080 0.223 0.511 0.9556 In 
interaction is zero 

(b) comparison of results obtained with the linear approximation and with the full PB equation 
eWOi/kT= z, 

z1 = 1 ;  z2 = 2 Z, = 0.6; 2,  = 3 

linear approx. full PB linear approx. full PB 

charge on surface 1 is zero 
force is zero 

1.317 1.179 2.292 2.086 
0.693 0.635 1.609 1.45 1 
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where t+v is the potential at a distance x from the surface with potential vOl and H i s  the 
distance between the two surfaces with potentials vol and vO2, respectively. K is the 
inverse Debye length 

where F is the Faraday constant, R is the gas constant and c, is the molar concentration 
of the electrolyte, which is assumed to be symmetrical and monovalent. 

When the distance between the surfaces is made smaller, a point is reached [see fig. 
1 (b)], where the minimum in the potential falls on the swface with potential vol. Then 
its surface charge is zero, but the surfaces still repel one another. In this situation the 
repulsive force even reaches its maximum, since v,, is the maximum value that can be 
reached by the potential in the minimum and the repulsive force per unit area, p ,  is given 
by Langmuir,12 VOrob as 

p = 2c, RT[cosh (etymin/kT) - 11 = E, E, K~ (“a)’ - (cosh u - 1) 

= [for the case of fig. 1 (b)] E, E, K~ reT)’ - [cosh (ev,,/kT) - 11 (4) 

where vmin is the potential in the minimum and u = evmin/kT.  In Derjaguin’s paper’ 
this maximum in the repulsive force is nicely shown in the figures, and also that its value 
depends only on the lower surface potential, since there ymin = wol. 

At smaller distances than those in fig. l(b), the surface charge on the first surface is 
reversed in sign, but the potential us. distance curve can be extended to negative values 
of x, and as long as a minimum potential occurs in the prolonged curve, this vmin may 
be used in eqn (4) to find the repulsive force between the surfaces. 

At the separation shown in fig. 1 (c), where the minimum has shifted to x + - 00 and 
tymin = 0, the repulsive force is zero and a maximum occurs in the interaction free 
energy. At distances shorter than that in fig. 1 ( c )  there is no minimum in the potential 
any more, the force becomes attractive and at the separation shown in fig. 1 (d )  the free 
energy of interaction goes through zero to end up at minus infinity at zero separation. 

Table 2 illustrates how the separations at which the various sign reversals occur 
depend on the values of the two surface potentials. 

The separations at which the reversals occur increase with the ratio vO2/vol. At 
ey/,,/kT = 2 or 3 the linear approximation gives reversal separations which are ca. 10 YO 
too high. 

With two spherical particles, only the regions close to the axis of symmetry may show 
these reversals, whereas the parts of the surfaces farther away from the axis will be 
separated by larger distances and thus show no reversal. The net effect will be that the 
force and the free energy will change sign only at considerably smaller distances between 
the spherical surfaces than were found for parallel flat surfaces. 

The Free Energy of Interaction 
Parallel Flat Surfaces, High Surface Potentials, Large Distances 

From the potential distribution given in eqn (2)  HHF derive an expression for the free 
energy of interaction per unit area of two parallel flat double layers, exact in the linear 
approximation and given by 

1 - wtr + vt2 exp ( 
2v01 v02 
1 - exp (-2rcH) K H F  = 2% Eo w o r  v 0 2  exp (- K H )  

= 2 ~ ,  E, KW,,  yo2 exp ( -KH) (for large KH). 
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For high potentials expressions for the free energy of interaction become cumbersome 
and contain elliptic integrals (VO1OC), but for high surface potentials and small 
interaction, interesting comparisons can be made. For large separations correct values 
for the potential around the minimum are obtained by superimposing the potential 
distributions of the two separate double layers, each stretching out to infinity, on one 
another. The following expressions are exact in the limit, K H +  co. Henceforth we shall 
use yi = e y i / k T ;  zi = eyoi/kT; yi = tanh(zJ4) and i = 1 or 2: 

tanh (y,/4) = tanh (z1/4) exp (- K X )  

and 
For small interactions we thus find 

tanh ( y2/4) = tanh (Z2/4) exp [ - K ( H -  x)]. (6) 

which has a minimum ymin = u when y ,  = y 2  and consequently 

~ X P  ( - Kxmin) = ( ~ ~ 7 1 ) ;  ~ X P  ( - K H / ~ )  
and thus u = ~ ( y ,  y2)+ exp ( - KH/~) .  
Combining this expression with eqn (4) for the repulsive force per unit area and 
integrating the force from H = co to H = H, we find for the free energy of interaction 
per unit area 

(10) 
This differs from VHHF by the replacement of yo? yo2 by 16(kT/e)2 y1 y 2 .  

h a ~ e ~ ? ~  for the energy of interaction per unit area of two parallel surfaces 

Kv = 2.5, E ,  Ic(kT/e)2 (1 6 ~ 1  y 2 )  exp (- K H ) .  

An analogous equation for BM conditions is obtained as follows. They would 

EBM = -(+l VOl+h2 V / 0 2 ) + [ & 1 ( H j  V/Ol+$2(H+ V/021 (1 1)  
where oi is the charge per unit area of surface i. With 

0 1  = -~r~o(d~/l/dx)z-o, *2 = + E r  ~o(dy/2ldx)z==, 
and 
where the minus sign is good for x = 0 and the plus sign for x = H ,  we find easily 

EBM = $ E ~ E ~  Ic(kT/e) (tyO1(2 sinh (z,/2) - 2 sinh (z1/2) [l - sinh2 (u/2)/sinh2 (z1/2)];] 

+ tpO2(2 sinh (z2/2) - 2 sinh (z2/2) [ 1 - sinh2 (u/2)/sinh2 (z2/2)]i}) 

(dy/dx),-,,,-, = T (kT/e) 4 2  cosh zi - 2 cosh u)i (12) 

z $cr E, K(kT/e)2 ( sinh;il/2) + sinh '2 (z2/2) ) 4 (for small u, large K H ) .  (13) 

With u as found in eqn (9) we have 

(14) z1/4 + 

(sinh (z,/2) sinh (z2/2) EBM = ~ E , E ~ K ( ~ T / ~ ) ~  

differs from Kv by the factor with [zi/4 sinh(zi/2)]. 
In table 3 results are given for a few typical cases and we also give general expressions 

for the ratio of the various free energies of interaction. Again the correct expression 
based on -J Q dty, is cu. half way between the linear approximation (HHF) and the BM 
results, but now HHF leads to the largest repulsion and BM to the smallest. 
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Fig. 2. The Derjaguin method for finding the interaction between spheres; see text, especially 
eqn (15). 

Parallel Flat Surfaces, Small Distances 
The HHF solution for the free energy of interaction, eqn (9, remains valid and is exact 
within the limitations of the linear approximation. 

In the BM approach based on -+y/, the interaction of flat surfaces is implicit in their 
treatment of the interaction of  sphere^.^.^'^ Unfortunately, a solution, other than 
numerical, based on - J CT d y/, is not available, since it requires the integration of eqn (1 2) 
for CT with respect to zi, and u is a complicated function of z, and z,. The best way to solve 
the problem appears to be the use of the charging process of the ions in the solution, 
rather than on the surface, as was used by VO'Od for the symmetric case; however, since 
this involves a great deal of calculation we will not do this now, but switch to spherical 
particles. 

Interaction between Spherical Particles 

In the absence of a closed solution of the PB equation for spheres, HHF used the method 
proposed by Derjaguin13 in 1934 for deriving the interaction between spheres from that 
between flat surfaces. In this method the interaction (force or energy) of spheres is 
supposed to be built up from the interaction of pairs of rings with radius h, thickness dh, 
at a distance H, the rings interacting as if they were parallel flat surfaces with the same 
area and distance as illustrated in fig. 2 and in the equation 

h-large 

2nh V(flat) dh 

where VR is the interaction between two spheres, V(flat) is the interaction per unit area 
of parallel surfaces and the upper limit of integration is so large that at the 
corresponding distance H interaction is negligible. The two conditions, viz. the field lines 
are virtually parallel and the maximum H is much smaller than the radius, limit the 
applicability of the Derjaguin method to large values of Ica (say Ica is 10 or more) and 
to Ho 4 a,,a,. To a reasonable approximation 

(i+-!-)hdh = d H  

and thus eqn (15) can be transformed into 
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With this equation and VHHF(H) from eqn ( 5 )  the free energy of interaction of two 
spheres becomes 

This equation contains all the essentials of interaction and is exact for sufficiently large 
rca, and Ica,. The free energy goes through zero at much lower distances Ho than for flat 
surfaces. For vO2 = 2yOl the reversal distance is 0.001 9 7 3 / ~  as compared to 0 .223 /~  for 
flat surfaces. 

If Ica, and/or Ica, are not very large, eqn (16) can be slightly improved to 

hdh[(aT-h2)-i+(ai-h2)-i] = d H  

or approximately to 

where a, is the radius of the smaller sphere, and it is taken into account that most of the 
interaction takes place at K 2 h 2  < 2 ~ a , .  Thus, apart from the influence of the actual 
curvature of the field lines, the classical Derjaguin result, eqn (17), and thus VR,HHF, 
eqn (18), are too large by a factor of the order of (1 + l/Kal). 

Ohshima, Chan, Healy and White14 (OCHW) took the curvature of the field lines into 
account and calculated a correction on VR,HHF still smaller than, but of the same sign as 
that found above. Barouch, MatijeviC and coworkers2* 5 , 6  tackled the interaction of 
spheres in a rather different way, but Chan and White3 showed that their method is in 
the first approximation, i.e. neglecting 1 /Ica corrections, equivalent to the Derjaguin 
method. BMRF2 neglect the curvature of the field lines, calculate the potential gradient 
at the surface (proportional to the surface charge densities a, and a,) for each h (see 
fig. 2, and note that BM and coworkers call r what we call h here) and then find the 
interaction ER, BM as 

where the factors (1 - h2/at)-i take into account that the surfaces of the spheres are not 
exactly perpendicular to the axis of symmetry. I have written 

to bring out the parallel with the treatment for flat surfaces in eqn (1 1) and (1 2). The 
integration constant # ( H )  is equal to cosh u when the potential has a minimum between 
or at the low potential side of the surfaces, but # ( H )  < 1 and may even be negative when 
the # us. x curve [see fig. 1 (d)]  drops to - GO. The use of the sign for o is tricky. If both 
surface potentials are positive, a2 is always positive (lyo21 > [~,J), but a, is positive when 
a minimum potential exists between the surfaces, otherwise a, is negative, as should be 
clear from fig. 1. For negative surface potentials the signs of a are just reversed. 

The relation between H and q5 is found from 

in cases in which the potential increases monotonically with x [fig. 1 (6)-(d)], but when 
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there is a potential minimum between the surfaces [fig. 1 (a)] eqn (22) has to be modified 
to 

dY 2 2  dY x m i n  H 

dx + 
= 10 Jzmin dx = - 1: 4 2  cosh y - 2 cosh u(H)]!+ Ju 1c[2 cosh y - 2 cosh u(H)]! 

(23) 

For the integration of eqn (20) and (21) a relation between H and h is required, for 
where q5 has been interpreted as coshu. 

which Barouch, MatijeviC and coworkers use the integrated form of eqn (16): 

In eqn (20) it has been taken into account that the surfaces of the sphere rings are slightly 
larger than 27rhdh. Similarly in eqn (21) it should have been taken into account that o 
is proportional to the potential gradient normal to the equipotential surface and 
therefore larger by a factor (1  - h2/at)-a than the value given in eqn (21). The omission 
of this factor makes ER,SM slightly lower than it should have been. 

In BM5 and BMW' the integrations of eqn (20)-(23) are carried out in detail, 
transforming the integrals in eqn (22) and (23) to standard elliptic integrals and 
switching from h to # as the independent variable in eqn (20) and (21). Two sets of final 
equations are generated, one for the case with a minimum potential between the surfaces 
for all values of h. This one is straightforward, and the results are correct, apart from 
the use of - f J  yo adA instead of -J Qdy,, and for the distances involved and low 
potentials the results are not too far from those of HHF. The very large deviations found 
for high potentials (fig. 8 in BM') are in line with our discussion in the section Parallel 
Flat Surfaces, High Surface Potential, Large Distances and table 3. 

The other group of cases (no potential minimum between the surfaces at least for 
small h) is complicated. The integral for the energy [eqn (20)] has to be split into two 
integrals from 0 to h, and from h, to higher h, where h, is the radius of the ring where 
the surface charge on surface 1 changes sign [fig. 1 (b)] and therefore q5, = coshz,. The 
relation between q5 and H is found from eqn (22), which can be converted into standard 
elliptic integrals, but the exact transformation is different for different ranges of q5 (see 
BMW'). Taking all this into account, the actual integration of eqn (20) and (21) after 
switching from h to q5 as the integration variable is straightforward, but it has to be 
carried out numerically, as dealt with in detail in BMW.' 

Unfortunately, BM5 and BMW' did not change the sign of o at h < h, in accordance 
with their omission of the & sign in eqn (2.6), thus making their interaction energy too 
low by twice the absolute value of the terms involved at all separations Ho < h,. It is just 
at these short distances that the striking differences with HHF were found. To make the 
point more explicit, we give the relevant equations from Barouch and Matijevid5 and 
indicate the changes of sign that have to be made. The BM equations have been recast 
using the symbols used in this paper. Their eqn (5.3) reads 

[cash z1 - $(H)]! - (cosh z ,  - I)! 
[(Ica,)2 - ( ~ h ) ~ ] f  

ER,BM ='%EOE)Yn\ /2C-alz ,  l1 ( 
[cosh 2, - #(H)]+ - (cosh 2, - 1); 

[ ( ~ c a , ) ~  - ( K / Z ) ~ ] !  
x (Ich) d(Ich) -a2 z2 

They integrate eqn (5.3) by parts to obtain their eqn (5.7). However, before this is done 
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Fig. 3. Free energy of interaction of two spheres, lyol = 25 mV, lyo2 = 50 mV; KU, = 10, K U ~  = 20 
us. dimensionless shortest distance uHO ( K  = lo7 rn-l). Figure redrawn from Barouch and 
MatijeviL7 HHF according to eqn (18), PB equation linearized. BM as given in ref. (7) using the 
BM eqn (5.13). BM corrected according to eqn (27) and (28). See text. (---), HHF, (-) BM, 

( *  * - )  BM corrected. 

the first integral should have been split at h = h, and the sign of [cosh z1 - #(H)]' should 
have been changed to - [cosh z, - #(H)]i ,  leading to 

1 (cash z1 - 1)i + [cosh z1 - 9(H)] i  
ER, .,(corrected) = E, E, 

- (~ch)~]f  
x (Ich) d(ich) 

(cosh z1 - 1); - [cosh z1 - '(H)l') (Ich) d(rch) 
- ( ~ h ) ~ ] :  

' - 2 - 2 J ,  [ ( ~ c a , ) ~  - ( ~ c h ) ~ ] ;  

Integration by parts then gives eqn (27), which should replace BM eqn (5.13) and BMW 
eqn (2). 

W # ( H , )  - 11 ER,.,(corrected) = E , E ,  
(cosh z, - 1); [cosh z1 - #(Ho)]i 



3090 Double-layer In terac t ion 

Ultimately this error in sign causes ER,BM as used in the BM papers to be too low by an 
amount [cf. eqn (25) and (26)] AER,BM 

In order to give at least an impression of the quantitative effect of this correction, I 
roughly calculated it for the case yo,  = 25 mV, vO2 = 50 mV, lea, = 10 and k-a, = 20, as 
drawn in the BM I11 fig. 1, in the following way. Using tables of elliptic integrals I 
calculated the relation between #, varying from - 135 to + 1.5 1 16 and K H ,  varying from 
0.0587 to 1.185 at ca. 15 points, using eqn (22). Using ca. 10 of these values of K H  for 
K H ~  I calculated h2 corresponding to H -  Ho using eqn (24). Then I plotted the integrand 
of eqn (28) against ( K h ) ,  and carried out the integration graphically. The final results 
expressed as AER, .,/kT are plotted in fig. 3 as additions to the line copied from the BM 
paper,' and the corrected ER, BM values come quite close to the VHHF values plotted in the 
same figure. 

Conclusions 
It is stressed that the free energy of a double-layer system under conditions of constant 
surface potential (i.e. the ions carrying the surface charge are in equilibrium with an 
excess of similar ions in the solution) is given by -J Q dv, [eqn (l)]. 

The remarkable success of the linearized Poisson-Boltzmann equation in the 
treatment of the free energy of the double layer and of double-layer interaction even at 
dimensionless surface potentials of 2 (ca. 50 mV) is due to the fact that the first 
correction factor is (1 & z2/48). 

The expressions, derived from the equivalent of -;Jawo dA (= -@v0 if vo is 
constant) as proposed by Barouch, Matijevid and coworkers deviate in the first 
approximation from the correct expressions derived from -JQdyO by a factor 
(1 T z2/48), and are thus in this respect neither better nor worse than the linear approxi- 
mation, but the deviations have the opposite sign. 

The BM results published in ref. (5)-(8) are marred by an error of calculation which 
invalidates their results at separations below critical separation [see fig. 1 (b) and 
eqn (26)], and in particular invalidates their suggestion that the true interaction shows 
a qualitative difference with the results of Hogg et aZ.,' who applied the linearized PB 
equation. 

There is no profit in continuing calculations on double-layer interaction based on 
-@p0 at high surface potentials. The method is much more complicated than that 
based on the linearized PB equation, and the results are not essentially closer to the true 
value. 

Further progress in this field for moderate and high potentials will require solution of 
the integral - J Q dvo or, equivalently, application of an imaginary charging process for 
the ions in solution, or integrating the force from infinity to the distance under 
consideration. 

As long as rca is large enough (rca % 10) the Derjaguin method is excellent for 
transforming the interaction of flat surfaces to that between curved surfaces. 

For small Ica and high potentials no analytical solutions or suitable series expansions 
are available. The only known way out at this moment is a computer solution of the :full 
PB equation for the relevant geometry, and after that carrying out -$ Q dty0 or one of 
its equivalents or (this would be a new method) calculating the field energy, the entropy 
of the uneven distribution of the ions and of the adsorption or dissociation free 
energy. 
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