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Abstract - In a brief historical survey various attempts to explain the
rule of Schulze and Hardy are mentioned. It is argued that the inverse
proportionality between the coagulation concentration and the sixth power
of the charge number of the counterion, as it has been derived from the
DLVO theory, cannot be the complete explanation, since as a rule potentials
in the Gouy layer are not high enough. It is shown that a combination of
van der Waals attraction and electrostatic repulsion can explain the rule
of Schulze and Hardy, if adsorption of counterions in the Stern layer is
taken into account. The adsorption potential must then increase fairly
strongly with the charge of the counterion. Structural forces (due to the
molecular structure of the solvent) may be important, but the quantitative
theory of these forces has not yet been sufficiently developed to
incorporate them in the theory of coagulation.

INTRODUCTION

In 1882 Schulze (l) pointed out that the coagulating power (on As2S3 and other sols) of salts
increased very strongly with the charge number of the cations. Somewhat later Hardy (2)
widened the statement to include positively charged sol particles for which the coagulation
is sensitive to the charge of the anions. He also gave a quantitative formulation of what
later would be called the rule of Schulze and Hardy. According to Hardy the coagulation
concentrations (a.a) of mono-, di- and tervalent coagulating ions are in the ratio of 1 to x
to x^ where x is about 1/30 to 1/40 or, with z as the absolute value of the charge number,

log e.c.(s) = a - bz (1)

where b is a positive constant.
With Whetham (3) he also gave a theoretical interpretation of this relation, which nowadays
does not sound very convincing.
Hardy knew that colloid stability is lost when the particles are brought to the isoelectric
point. Based on more precise data Ellis (4) and Powis (5) found that a critical electrokine-
tic potential (Ccr£t;) exists below which lyophobic sols are unstable. Co-it varies around
25-30 mV, but often monovalent coagulating ions form an exception with coagulation occurring
at higher values of Ç (50 mV or more).
Freundlich (6) combined the idea that coagulation requires discharge of the sol particles to
the same extent with the assumption, that the adsorption isotherms of the coagulating ions
are about identical if expressed on a molar scale. Since the discharge requires adsorption
of the same number of equivalents, and since the adsorption isotherm is curved, coagulation
occurs at a lower concentration, the higher the charge of the ions. Quantitatively the use
of Freundlich's adsorption isotherm leads to:

log ads (in moles/area) = p H— log s (in moles/vol)

or

., ads (in equiv/area) 1 . , , , ,.
log - — = p + — log a (moles/vol)

% Tï

or log s.o.{3} = const. - n log 2 (2)

In the late thirties and early forties other interpretations of the Schulze Hardy rule
(S.H. rule) were given.
Wo. Ostwald (7) postulated constancy of the activity coefficient of the counterion at the
coagulation concentration.

log fz = - Bz
2K = - 023(c.e.)5 = constant (3)
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where K is the inverse Debye length and B and D are constants.
Tezak (8) derived an equation

log o.a.(z) = const - bz (4)

using the concept of Bjerrum's critical distance (z+z_e /8iï££okT) for the formation of ion
pairs.
Eilers and Korff (9) suggested that a combination of the Debye length (!/K) and the
C-potential, having the dimension of an energy, should govern the a.o, and they found:

Ç /K = constant at the a.o. (5)

Even if this relation would always be satisfied, it leaves the question open, how £ depends
on c and z, and therefore, how the S.H. rule has to be explained.
All the above mentioned authors have realized that within one charge group (e.g. the alkali
ions) small and sometimes not so small variations of the a.o. occurred, and that charge and
nature of the co-ions were not without some influence on the O.S. These variations make it
more difficult to choose amongst the various equations on the basis of empirical data.
Moreover, probably none of these equations reflects the data precisely.

STABILITY OF COLLOIDS BASED ON FORCES BETWEEN PARTICLES

Great progress in the understanding of colloid stability became possible after Kallmann and
Willstätter (10) drew attention to the long range character of the van der Waals attraction
between colloid particles and especially after de Boer (11) and Hamaker (12) gave explicit
equations for the attraction between two plates and between two spheres.
Combining this long range attraction with the long range repulsion caused by the overlap of
electric double layers, Derjaguin and Landau (13) and Verwey and Overbeek (14) worked out a
theory of colloid stability. The key notions in this theory are the facts that the van der
Waals force decays as an inverse power of the distance, H, between the particles, whereas
the electrostatic repulsion decays exponentially as exp(-Kff), in which K is proportional to
2/c. The free energy of interaction, V, between two particles, when plotted against the
distance between their surfaces gives curves as shown in Fig. 1. When Vj^g^ is high enough the

max

stable

coagulates H

Fig. 1. Schematic picture of the free energy of interaction between two
particles.

curve represents a stable system. Increasing the concentration and/or the charge number of
the counterions shortens the range of the repulsion and decreases ̂ m The system coagulates
when Vmax is small compared to kT and the coagulation concentration can in principle be found

from the condition V = dF/dfi = 0.
Using the relations for the interactions of two parallel thick plates separated by a gap H,
coagulation conditions are easily derived. For the attraction energy per unit area we have:

A
(6)

12TTÛ
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where A, the Hamaker constant is proportional to the London constant A and the square of the
number density of molecules q (A = Tt^-q A) . The influence of the medium between the plates can
be taken into account (12).
If we describe the electric double layers as pure Gouy-Chapman double layers with a surface
potential, <J> the repulsion energy per unit area is:

where for symmetrical electrolytes

K2 = 2zZF2c/£eoRT (8)

Y = tanh(zF<j> /4ÄZ7) (9)

-12
with £ = dielectric constant of the medium, e = permittivity of the vacuum = 8.854 x 10
CV m~', and R, T and F have their usual meaning.
Applying the condition 7 = dF/dfl = 0 to the total free energy of interaction

7=-/ R +7 A (.0)

we find easily that

KH = 2 (11)
and 2 1 1 3 5) J(ffr)iexp(-4) 4

- - -, -- -- (12)

When this relation had been found the explanation of the S.H. rule seemed obvious.
Y, being a tanh, could be considered a constant at high <j>o and thus oz = constant. This
agreed with Freundlich's equation (2) for n = 6, with Ostwald's equation (3) and moreover
when <j>0 is not high, but so low that- tanh(2.F<J>o/4Ar)

 K zF$QlkRT eq. (12) reduces to the
Eilers and Korf f relation (5) if we identify <j>Q with Ç. This all was made easy by the fact
that the Hamaker constant, A, could justifiably be considered as an adaptable parameter.
Values of A calculated from c.e.'s were of a reasonable order of magnitude, although somewhat
on the high side.
However, in the course of the years it became obvious that the theory required several
refinements and then the interpretation of the S.H. rule was not so obvious any more. After
the publications by Lifshitz and his coworkers (15) on the dispersion forces in condensed
matter, and after Parsegian, Ninham (16) and others (17,18) showed how numerical values for
A could be derived from Lifshitz' complicated equations with the help of limited optical
data, the Hamaker constant ceased to be a widely adaptable parameter. Furthermore realistic
models of the double layer had to include ion size, as was done in the Stern (19) theory.
This theory indicated that, at least in coagulation conditions, $o in Y was rather low than
high, and then eq. (12) brought us back to the Eilers and Korf f relation with the vexing
question how Ç or c)>o in Y depends on c and 2. Before we dive more deeply into this problem,
we first have to mention a recent development of another nature.

STRUCTURAL FORCES

The notion that near an interface the solvent has a structure differing from that in the bulk
and that this solvation might influence the interaction between particles at short distances
is not new. In recent years, however, it has been set on a new footing by Ninham and
coworkers (20) and by van Megen and Snook (21). They argue that the disturbance of the
packing of a liquid near a "wall" stretches out over several (5-10) molecular diameters and
that the overlap of two such disturbances leads to a force, which at short distances is large
compared with the van der Waals force, especially if the Hamaker constant is low, as in
lipid-water systems. Modern theories of liquids can in principle be applied to these
structural effects. Unfortunately, there is still a good deal of argument about the size and
range of these structural forces. It is even not certain whether they decay monotonously or
with pronounced oscillations. Especially for water, for which it still is impossible to
derive bulk properties from a priori models, the structural forces can only be dealt with
qualitatively. It is too early to try to incorporate them in a theory of colloid stability,
but one may hope that since stability is governed mainly by the interaction at fairly large
distances (eq. (11), KH = 2), structural forces may be neglected in a first approximation,
unless A is very small. Pending further developments in this field, we shall therefore now
attempt to analyze the van der Waals-electrostatic theory of colloid stability, taking care
to include the necessary refinements.
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FURTHER ANALYSIS OF THE RELATION BETWEEN COLLOID STABILITY AND
ELECTROSTATIC AND VAN DER WAALS FORCES

The rule of Schulze and Hardy is found very generally for hydrophobic colloids. Lyotropic
influences and effects of co-ions lead only to minor quantitative changes. Therefore we shall
neglect all these specific effects and only invoke the charge number of the counterions in
our analysis. This does not mean that we may forget adsorption of these ions in the Stern
layer, only that the extent of this adsorption should be determined by z and c. We must take
the fact that ions have a finite size into account and this leads us to the choice of the
Gouy-Stern double layer as our model. As Fig. 2 shows, this model implies that the van der
Waals attraction acts over a distance E and the repulsion over a distance H - 2A, with §^,
the potential at the transition between Gouy and Stern layers acting as the surface potential
in eqs. (7) and (9). It can be proved (Ref. 14, p. 126) that the distribution of charge
between the two layers changes very little during the approach of two particles.

A

cr

Fig. 2. Notation for distances, surface charge densities and potentials
in the interacting double layers of two particles. For spherical particles
H is the shortest distance between the surfaces. The potential, <j>, is zero
in the bulk of the liquid far away from any particle.

The coagulation condition (eq. 12) has to be modified by introducing the distance A into it
and by replacing <j>0 in eq. (9) for y by cj)̂ . Furthermore we shall use equations for spherical
particles rather than for flat plates, since this allows us to discuss where the particle
size enters into the picture.
We must now realize that s.o.'s are in the order of 10-200 mM for 2 = 1 , 0.2-2 mM for 3=2
and 0.1 mM or less for 2 = 3 (see Ref. 22).
Furthermore, Hamaker constants across water as the dispersion medium are in the range
A = 0.5 - 5 x 10~20 J for salts and oxides, A = 5 - 30 x 10"20 J for metals (18), and
A = 0.3 - 1 x 10~20 J for hydrocarbons. In this latter case A is not strictly constant, but
varies with H even for non-retarded forces (see Ref. 16). When we use these figures in the
coagulation relation (eq. 12) and its modifications, we find that z§^ is in the range of
10-90 mV, which leads to values of CTGouy of 2-20 y C cm"

2 for z = 1, 0.1-1 u C cm"2 for
2 = 2, and < 0.2 u C cm"2 for 2 = 3 .
Combining these values with the knowledge that analytical surface charge densities, O0, vary
from a few to perhaps 50 p C cm (Agi in water has a0 = 4-5 U C cm"

2, and this is a low
value, when compared with other substances), it is clear that, certainly for multivalent
counterions, a substantial part of the charge must be in the Stern layer, in which also a
substantial fraction of the total potential drop, o > occurs. Since the potential drop in
the Stern layer (strictly, between the interface and the inner Helmholtz plane) is
proportional to CT to be independent

of the concentration of non-potential determining electrolytes, or make any assumption
between these two extremes. For simplicity we choose 0O = constant for the rest of our
analysis.

QUANTITATIVE ASPECTS

A quantitative theory for the S.H. rule for spherical particles contains the following
elements.
1. The free energy of interaction, V, between a pair of spheres of radius a.
2. Derived from it (using V = d¥/d3 = 0) the coagulation relation between a, 8 and (Jjj
(modified eq. 12).
3. A relation between ao, a, s and cj)̂  based upon the chosen model of the double layer.
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These elements give two fairly complicated relations between o, z and (j)̂. Using numerical
work it is not too difficult to eliminate (J)̂  and find the S.H. rule expressed as a non-
analytical relation between c and s.

Van der Waals attraction

Hamaker f 12) gave the energy of attraction V. between two equal spheres of radius a at a
distance H between their surfaces.

For small distances (H ̂  a) eq. (13) can be approximated as

'A 123

but due to the logarithmic term in eq. (13) this is rather a bad approximation. It is
already off by 9% at H - 0.01 a and by 70% at H = 0.1 a. A very much better approximation is:

where L = a + | H. It is off by only 1.4% at H = 0.1 a

Electrostatic repulsion

The free energy of repulsion, FR, between two particles is given by:

(.6)

with y = tanh(sFc()d/4Ar) . When <j>d is small (s<f>(j < 100 mV) , /R may be approximated by:

a+A)<}>
2 e"K(S"2A) (17)

These equations are good approximations for Ka S* 1 and K(ff-2A) > 1 and not bad down to
K(#-2A) = 1.

Coagulation condition

Combining eqs. (15) and (16) to the total free energy of interaction V = 7A + 7R and
applying the condition V = aV/aH = 0 leads to:

and

3V exp(-2)(47Te£

Apart from the corrections for A and for 1/tca this equation differs from eq. (12) by a factor
^•2-^ = 0.46182.

Surface charge density

The surface charge density, aQ = (charge on sphere) /4tra , is compensated by the charges in
the Stern and Gouy layers.

- a = a + a, (20)
o st d

For the diffuse charge we have:

, _ , . ̂
ad - - ̂iOF (1 + ̂)0' sinh _^ (21)

and for the charge adsorbed in the molecular condenser:
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a = - M5 - - - (22)
st , 55.346 mol l"' .+

 a**d *ads
l +• - - - exp(± -

In the ± signs the upper sign refers to positive counterions, the lower sign to negative
counterions .
With Stern (19) we assume that the adsorption obeys a Langmuir type isotherm, in which rmax
represents the amount of adsorption sites per unit area. The adsorbed ions are presumably
closer to the surface (in the inner Helmholtz plane, see Grahame Ref . 23) than the last Gouy
ions. The adsorption potential, <t>aijs, contains therefore also a contribution
(zF($j_ jj„ -<(>,}) , in addition to a contribution from local effects, but since ij)̂  H is
greatly model dependent, we shall not attempt to split <f>a(js. We have also assumed that we may
neglect the curvature of the surface in ag(..
We have already argued that ast must be fairly large, even when a is as low as the o.e. for
multivalent ions. This can only be attained, if !$a(js increases so strongly with z that
c exp( | <j> j „/AT | ) remains more or less constant at the o.a. An adsorption potential increasing
linearly with z suggests ion pair formation of the counterions with ions of the surface
charge. This again would require rmax to be equal to or even somewhat smaller than the
amount of surface charge, O0/F.

Relation betaeen o.a. and z

In order to obtain the S.H. relation between 0 and z by elimination of (J)j from the coagula-
tion equation (19) and the charge equations (20, 21 and 22) we have now to introduce numeri-
cal parameters. We have chosen water at 25°C with E = 78.304 as the dispersion medium. We
omitted corrections for particle size, i.e. we assumed Ka S> 1 and a ̂  A . We have made
calculations covering a range of values of A (from 0.3 - 30 x 10 ° J, with some emphasis on
A = 3 x 1CT20 J), of the o.a. for monovalent ions (10-300 m mol 1~') of £Tmax (from 0.7-50

C cm and taken to be equal to |cQ ). For the thickness of the Stern layer we tookQ

A = 4 S. For each combination of. A, o.a., and .?Tmax we fitted adsorption potentials to the
Q

For each combination of. A,
equation

kads/^l -p +qz (23)

A fairly narrow range of constants p and q then leads to reasonable values for the o.a.' s
for di- and trivalent ions. The same equations (19-22) allow, of course, the calculation of

^ads from experimental a.a.'s.

oase 1 . So ions in Stern layer

As a starting point we consider the case that there are no ions adsorbed in the Stern layer
(a t = 0) . For low potentials we expect then that the coagulation concentrations are in the
ratio 1 : 1/4 : 1/9 for 3 = 1 , 2 and 3. For high potentials these ratios should go to
1 : (1/2)° : (1/3)6. One should realize, however, that one must go to rather extreme cases tc
reach these ideal limits.
For A = 10~20 J, o.a. (s=l) = 30 m mol 1 and A = 0 the surface potential is only 17.4 mV
but the ratios for 3 = 2 and z = 3 are found at 1/4.5 and 1/12 instead of at 1/4 and 1/9.
Choosing A = 4 8 changes <j>d to 13.8-14.0 mV but the ratios of coagulation concentrations are
only slightly changed as should be expected since K in KA is itself proportional to (es2)5.

TABLE 1. Coagulation at high surface charge density but with ast = 0.

A in

IQ'20 J

30

30

z

\

2

3

1

2

3

s in

m mol 1

30*

0.

0.

100

0.

0.

629

05717

832

0645

A

in A

0

0

0

4

4

4

°st
in u

0

0

0

0

0

0

C

23

23

23

18

18

18

cm

.6

.6

.6

.30

.31

.23

in mV

161 .8

130.5

107.5

118

120

102

S

s

=

=

a

=

=

.H. relation

(1)

48 a

525

(1)

120

1550

=

(2) =

a (3)

=

o (2) =

a (3)

At A = 30 and A = O, o - 100 did not lead to a curve of the stable type
(see Fig. 1) even with ö", -*- °°.
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At the other end of the scale even for a surface potential as high as 162 mV (for 3 = 1 ) the
ideal concentration ratio is not yet reached as is shown in Table 1. There it can also be
seen that now the introduction of a finite thickness (A = 4 8) of the still empty Stern
layer leads to an overshooting of the ideal z~° ratios. This is due to the fact that the
e K" factor in eq. (19), which increases a, has a much greater influence at the high
concentration of the monovalent case than at the low concentrations of the multivalent
coagulations.

oase 3. Stern adsorption potential, <j> , ,, independent of charge numberads
As mentioned before charge in the Stern layer is needed to explain that the total charge is
high at low surface potential, (j)̂. The simplest case to consider then is a constant adsorp-
tion potential, (fads • But, as shown in Table 2, this does not lead to a much greater
spreading of the a.o.'s. The constant adsorption potential pushes ions to the Stern layer
through the exp(-|(f> , /RT\) term in eq. (22), but since o decreases faster than 2~'
according to eq. (19) the net effect is a decrease of the Stern charge with increasing z.
This is overcompensated by the influence of the exp(±sF(f)cj/A2') term but the total effect on
the o.a.'s remains small. Table 2 gives two examples for A = 3 x 10~20 J and A = 10 x 10~20 J.
For other values of the parameters the effect of constant (fads i-s similar.

TABLE 2. Coagulation changes due to an adsorption potential,
independent or s. ^max = o* ~

A in s

,o-20 j

3 1

2

3

3 1

2

3

10 1

2

3

10 1

2

3

c in

m mol 1

100

16.74

3.85

100

11 .95

2.533

100

6.002

0.593

100

4.649

0.5015

^ads
RT

0

0

0

5.618

5.618

5.618

0

0

0

4.464

4.464

4.464

-a
o
in u

2.0657

2.0657

2.0657

5

5

5

4.568

4.568

4.568

10

10

10

a a,
st „d
C cm'

0

0

0

2

3

3

0

0

0

5

6

7

.011

.011

.015

.945

.353

.586

.063

.097

. 140

.495

.723

.344

2

2

2

2

1

1

4

4

4

4

3

2

.055

.054

.051

.055

.647

.414

.505

.471

.428

.505

.282

.658

-*d
in mV

27

28

30

27

27

27

52

59

58

52

54

51

.2

.5

. 1

.2

.5

.5

.7

.0

.8

.7

.5

.6

S.E. relation

c (1)

= 60

= 26 o

c (1)

= 8 c

= 40 c

c (D

= 17 o

= 168

o (D

= 22 c

= 199

=

(2) =

(3)

=

(2) =

(3)

=

(2) =

c (3)

=

(2) =

o (3)

aase Z. Stern adsorption potential, <j>
• P + ̂

, , increasing with the charge number.

When we allow <t>ads to increase with z, the calculated spread of the o.a.'s becomes larger.
If reasonable S.H. concentrations are to be obtained (e(l)/20 - e(l)/100 for c(s=2); and
c(l)/400 - o(l)/4000 for c(z=3)) the choice of <f>a(js is limited to a fairly narrow range. It
appears to be easy to adapt <j>ads to all combinations of A, ao so as to obtain reasonable
values of the o.a. In Table 3 we show two cases to be compared with the examples of Table 2
and a series of five cases where the same values of \§a^s/RT\ = 2 + 32 have been used for
the whole range of values of A. The first two examples show how by simply increasing the
values of <j>ads for 2=2 and 2=3 a.a.'s are obtained that follow the S.H. rule. The other five
examples shows that the same set of <j> , leads to a somewhat larger spread of o.o.'s at high
A than at low A, as might be expected from the fact that the Stern potential (j)̂  increases
markedly with A. Table 4 gives examples where <t>a<js i-s chosen strictly proportional with 2;
thus 't'ads = qz. Here also acceptable S.H. concentrations are obtained although the ratio
c(l)/e(2) is on the low side for the lower values of A.
The linear relation between §acjg and 2 has been chosen, since the constant term may represent
a non specific interaction between the adsorbed ion and the interface, e.g. due to a local
disturbance of the water structure. The term proportional to z represents electrostatic
interaction with the potential at the inner Helmholtz plane (<t>̂  H ) and also the electro-
static energy in ion pair formation with the ions carrying the surface charge (J .



] 158 J. THEODOOR G. OVERBEEK

TABLE 3. Coagulation concentrations under the influence of an adsorption
potential increasing with z.

A in 2

IQ"20 J

3 1

2

3

10 1

2

3

0.3 1

2

3

1.0 1

2

3

3.0 1

2

3

10.0 1

2

3

30.0 1

2

3

a in

m mol 1

100

2.

0.

100

1 .

0.

123.

6.

0.

154.

4.

0.

136.

2.

0.

62.

1.

0.

31.

0.

0.

101

0885

375

0599

9

093

2484

8

741

1745

5

781

1036

38

0195

0439

13

2844

0146

dt
ads
ET

5.618

8.418

1 1 .218

4.464

7.464

10.464

5

8

1 1

5

8

1 1

5

8

1 1

5

8

1 1

5

8

1 1

leads'

-a

in

5

5

5

10

10

10

1 .0

1.0

1.0

2.5

2.5

2.5

5

5

5

7.5

7.5

7.5

30

30

30

'RT \ = p + qz. FT1 r n max

°st
U C

2.

4.

4.

5.

9.

9.

0.

0.

0.

1 .
2.

2.

2.

4.

4.

4.

6.

7.

23.

29.

29.

cm

945

532

917

495

098

853

316

735

949

080

071

426

578

424

905

106

819

389

411

239

880

-2d

2.

0.

0.

4.

0.

0.

0.

0.

0.

1.

0.

0.

2.

0.

0.

3.

0.

0.

6.

0.

0.

055

468

0844

505

905

150

684

265

051

420

429

075

422

577

096

394

681

1 13

590

766

122

in mV

27.2

20.2

12.1

52.7

38.0

21.9

8.48

7.34

4.66

15.6

13. 1

8.0

27.4

21.4

12.6

50.8

34.9

20.0

96.4

53.0

29.5

- a . A = 4 S
o

S.H. relation

s (1)

= 48 a

= 1130

s (1)

= 73 s

= 1669

s (1)

= 20 c

= 499

s (1)

= 33 s

= 887

c (1)

= 49 a

= 1318

Q (1)

= 61 c

= 1420

o (D

= 109

= 2134

=

(2) =

o (3)

=

(2) =

a (3)

=

(2) =

o (3)

=

(2) =

a (3)

=

(2) =

a (3)

=

(2) =

s (3)

=

o (2) =

o (3)

In many cases most of the countercharge is in the Stern layer and consequently (f'i.H.p. i-s

not much above (fî . Therefore the ion pair formation is assumed to be the most important
portion of the qz term in <f>ads- T

ne interaction energy E, per mole between counterions and
surface ions (assumed to be univalent) is

P _ zeF
4iree ro

(24)

where p is the distance between the centers of the two ions and e an average dielectric
constant in the surface region. For £ = 40 and v = 5 A we find:

4iree = 2.80 (25)

a value fitting quite well in the range of values shown in Tables 3 and 4.
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TABLE 4. Coagulation concentrations with an adsorption potential of the
type U , /RT\ = as. FT = -a . A = 4 8.v 'ads ' ^ max o

A in 2

IQ'20 J

0.3 1

2

3

1.0 1

2

3

3.0 1

2

3

10 1

2

3

30 1

2

3

c in

m mol 1

106

7

0

126

5

0

129

3

0

106

1

0

47

0

0

.5

.46

.222

.5

.91

.1575

.2

.62

.0951

.4

.377

.0414

.2

.347

.0140

'''ads
RT

3

7

1 1

3

7

1 1

3

7

1 1

3

7

1 1

3

7

11

.7

.4

.1

.7

.4

.1

.7

.4

. 1

.7

.4

. 1

.7

.4

.1

-a ao st
in u C cm

0.7

0.7

0.7

1.5

1.5

1.5

3.0

3.0

3.0

7.5

7.5

7.5

30

30

30

0

0

0

0

1

1

0

2

2

2

6

7

20

28

29

.068

.398

.653

.217

.002

.432

.646

.298

.911

.836

.594

.394

.27

.98

.88

_2ad

0.632

0.302

0.047

1.283

0.498

0.069

2.355

0.703

0.089

4.664

0.906

0.107

9.73

1 .03

0.116

in mV

8.44

7.56

4.54

15.6

13.6

7.8

27.4

22.6

12.3

52.8

38.0

19.6

105.4

58.0

29.1

S.H. relation

a (0 =
= 14.3

= 480 c

e (0 =
= 21 .4

= 803 a

a (1) =

= 36 c

= 1358

o (1) =

= 77 a

= 2568

o (1) =

c (2) =

(3)

c (2) =

(3)

(2) =

a (3)

(2) =

a (3)

= 136 a (2) =

= 3376 a (3)

NON AQUEOUS MEDIA

In polar organic media (such as the lower alcohols and ketones) and their mixtures with
water (24) the coagulation concentrations for monovalent ions are usually much lower than
those for the same particles in water. This is in part explained by the lower value of e in
the coagulation equation (19), often combined with a pronounced adsorption of the counter-
ions in the Stem layer. With bi- and multivalent ions this adsorption is so strong that the
coagulation can be described as due to charge neutralization based upon ion pair formation.
The analytical concentration of the coagulating electrolyte is just equivalent to the surface
charge of the particles. The free concentration is extremely low.
In our terminology, in these solvents (("ads has very high negative values especially for
counterions with a > 1. As an illustration we give in Table 5 an example (still for water at
25°C) in which <f>ad has been taken equal to -11.2 RT and -16.8 RT for 3 = 2 and 3
respectively, leading to very low c.c.'s.

TABLE 5. Very high adsorption potentials (\§aas/RT\ = 5.618 z) lead to
very low o.o.'s. Water at 25°C. FT = -a . A = 4 X.o

A in

,o-20 j

3

2

1

2

3

a in

m mol 1

100

0.2631

0.000853

5

1 1

16

*ads
RT

.618

.236

.854

-a

in

5

5

5

a

y

2

4

4

a

C cm~2

.945

.903

.999

2.055

0.097

0.002

~*d
in mV

27.19

12.61

3.77

S.

0

=

=

H. relation

(1) =

380 o (2) =

1.17 x 105e(3)

CONCLUSION

The Schulze Hardy rule as it is found experimentally with c.ß.'s decreasing strongly with
increase of the counterion charge and at a rather low, but finite C-potential (and Stern
potential, <j>j) requires two elements for its explanation.
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1. The interplay between van der Waals attraction and electrostatic repulsion explains that
coagulation occurs when <f>, Iz a (more precisely y /2 c) reaches a certain value and this
justifies the Eilers and Korff relation, Ç /K = constant at the o.a.
2. Adsorption of counterions in the molecular condenser due to an adsorption potential that
increases regularly with the charge number is required to explain the concentrations at
which the above critical value of fy^/z^e is reached. Such an adsorption may be due to the
formation of ion pairs with the surface charge groups, but other mechanisms are not excluded.

This interpretation of the S.H. rule contains elements of several previous theories and
shows why the coagulation theories of Freundlich (adsorption), Ostwald (s®c = const.), Tezak
(ion pair formation) and Eilers and Korff (C2/K = const.) could fit the facts so well. In
particular the Hardy and Tezak relation, log o.a. - a - bs, follows from our eqs. (22) and
(23) if as a very rough approximation the denominator of eq. (22) is assumed to be constant.
It is gratifying that this approach which stresses charge numbers, but neglects specific
effects comes to the same conclusion with respect to counterion adsorption as Lyklema's (25)
earlier approach which was mainly based on specific (lyotropic) effects.
Two shortcomings of the present development should be noted.
1. For low A, (j)̂  at the s.o. is always low and this agrees with the interpretation of a as
a function of cf>o and o. However, in some cases Ç for monovalent ions is not low at the o.a.
(Example: Agi). Could Ç be larger than ĉ ?
2. When counterions are strongly adsorbed reversal of charge becomes possible above the o.e.
With our choice, fTmax = -O0, charge reversal is not possible for a = 1 but remains possible
for 3 > 1. Experimentally charge reversal is not found so regularly, although with g > 2 and
with solvents with a lower dielectric constant, even for 2 = 2 (Ref. 24), it is rather the
rule than the exception. It may be necessary to introduce a value of £Tmax which is smaller
than -a , or to understand why ion pair formation virtually stops in water when the surface
charge is neutralized.
It appears now to be worthwhile to have a fresh look at old data or collect new data on the
relation between analytical charge (oo), surface potential <f>Q (if available) , Ç potential
(as a substitute for cj>,) and coagulation concentration. This might lead to a refinement or
replacement of the Stern model used here.
Defects of the theory in quantitative respect might help in obtaining information on
structural forces. Comparison of coagulation by monovalent ions, which occurs at small
distances of interaction, where structural forces might predominate, with coagulation by
multivalent ions where 1/ic and H at coagulation are large should be particularly helpful for
this purpose.
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