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I. THE ELECTRICAL DOUBLE LAYER

I.I INTRODUCTION

As early as in 1809 Reuss observed that in an aqueous dispersion of clay

particles the latter were migrating under the influence of an applied electric

field. Since that time, numerous investigations have shown this migration to be

quite a general phenomenon that is displayed by colloidal particles of very diverse

chemical composition and of a wide variety of sizes and shapes. It has been given

the name electrophoresis. Although electrophoresis is qualitatively identical to

the migration of ions in electrolyte solutions, quantitatively its description is

more involved and continues to be the subject of theoretical investigations.

For practical purposes a sound theoretical foundation of electrophoresis is of

considerable importance. It enables information to be obtained on the state of

charge of the particles and on the hydrodynamic resistance they encounter during

migration. Moreover, it predicts how electrophoretic mobilities can purposely be

varied, an essential topic in separation processes.

The similarity of electrophoresis and ionic migration indicates that colloidal

particles undergoing electrophoresis are electrically charged relative to the

continuous medium. As to the manner in which the particles acquire their charge,

four different mechanisms can be distinguished. For the above mentioned clay
4+

particles, to begin with, Si ions in the crystal lattice of these compounds can

be isomorphically substituted by Al ions. This process provides them with a

negative charge relative to the solution. The crystal structure of dispersed

particles can also be operative in another way in the acquisition of surface charge.

Several inorganic materials (e.g. the silver halides) adsorb the cations and anions

that constitute their crystal lattice preferentially and usually to a different

extent. Along with the ensuing surface charge, the potential difference between

solid and liquid also changes in this process and therefore these ions are called

potential determ-Lnifig ions. (Between a metal and a redox system, electrons play

the role of potential determining ions.) In passing it may be remarked that this

change in potential actually is a variation in the difference in Galvani potential

between the inner core of the particles and the bulk of the solution and is not



necessarily just a surface effect The Galvani potential difference can also vary

due to other causes, such as changes in the amount and type of adsorbed dipoles

In the context of this chapter, however, only those variations that involve a

redistribution of free charges (as contrasted to dipoles) will be dealt with. The

third mechanism is found when surfactant ions are present in the solution When

these accumulate at the interface, as the} usually do, they create a surface charge.

Other ions may also be preferentially adsorbed, although usually to a lesser degree

than surfactant ions Last but not least particles may carry surface groups that

can dissociate, e g carboxyl groups The degree of dissociation of these groups

usually depends on the pH and the composition of the solution This fourth

mechanism is particularly important for oxides, polyelectrolytes and proteins

When the dispersed particles carry a net charge, electroneutrality of the systen

as a whole requires the solution surrounding them to carry a charge of the same

magnitude, but with the opposite sign The charge on the particle and that in

the solution form an <>1ec->"n''O double layer. The charges in solution are mobile,

contrarj to those on the surface. This has important consequences for the charge-

(and potential-) distribution relative to the surface of the central particle. The

tendency to minimize the (Coulomb) energy results in attraction of ions with a

sign opposite to that of the surface (called counterions) and repulsion of ions

with equal sign (co-ions). On the other hand, in order to maximize the entropy

both ion types tend to reach a homogeneous distribution When the two tendencies

balance, thus when tne free energy is at a minimum, the situation is very much

like that in electrolyte solutions as described in the Debye-Huckel theory An

important difference with simple electrolyte solutions, however, is the circumstance

that in colloidal systems the potentials can be much higher and the particles are

larger, \ hich requires a more complicated theoretical treatment.

Because all theories of electrophoresis are related to the structure of the

electrical double layer around the moving entities, we start with a discussion of

the latter As a first approach only situations without an applied electrical field

will be considered

I 2 THEORY OF THE DIFFUSE DOUBLE LAYER

The theory of the diffuse electrical double layer has been developed

independent!} by Gouy and Chapman Their basic approach is very much like that

of the Debye-Huckel theory, which was de\eloped about 10 years later. Assuming

all ions to be pointlike charges both theories express the combined result of

electrostatic interaction and Brownian movement in terms of a Boltzmann-distribution

for all ion types This distribution can be expressed as

n r exp(- ? P\!I'I~') (1-1)



YI . is the number of ions of type i per unit volume, at a distance X from the

particle surface. At this position the potential has a value ijj relative to the

solution at very large x. Thus n. and <l> are both functions of the coordinate x.

n. is the value of n. in the bulk of the solution, where ty = 0; e is the elementary

charge, & the Boltzmann constant, T the absolute temperature and z. the charge

number of the ions, including their sign. Eq. (1-1) is in agreement with the

statement that counterions are attracted and that co-ions are repelled. This

situation is schematically depicted in fig. 1.
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Fig. ]. Schematic distribution of negative counterions (full circles) and positive
co-ions (open circles) in solution, relative to the surface of a positively charged
particle (hatched area).

The net charge per unit volume of solution, the space charge density p, is also

function of x. It amounts to

(1-2)

When further elaboration of this equation is restricted to the presence of just

one symmetric electrolyte (z = - z_ = s ; n = r<_ = r>) , (1-2) can be written

p = se(n+ - n_)

Substitution of (1-1) in (1-3) leads to

(1-3)

p = - ïzen sinh(zefyfkT) (1-4)



which applies for every value of x An additional relation between T, ip and p

is given by the Poisson equation Assuming the relative dielectric constant of the

solution, c , to be independent of the field strength and applying i at lonalized

four quantities equations this equation reads

divCgrad ip) = ^2il = - (r/t-rCQ) (1-5)

-12 + 2 -] -2
where e is the permittivity of free space (= 8 854 x 10 C K m )

Combination of (I--0 and (I-j) gives the Poisson-Boltzmann equation

V2i|; = (2zer!t^Q) sintiC^/V") (1-6)

which f ormb the basis of the Gouy- Chapman theory

Before considering the general merits of this equation, it is uoith^hile to

present the approximate form of (1-6) for 1o\ potent lais (il ^25/s mV) In that

case s inhfseijj /<"77) zety/K, and (1-6) simplifies to

V2^ - (2^2p2/t / )i|< - K2iD (1-7)

In passing it can be mentioned that tnis step is essentially the linearization

used in the Deb>e-Huckel theory
2 2 2

In the r h s of (1-7) the abbreviation K = (Ire z /e E rC ) has been introduced
o r

K has the dimension of a reciprocal length \j< is an important quantity that is

called the Debye-length or the thickness of the double layer' Uheieas the

physical justification of the latter term has to await the discussion of eq (1-1 1 ) ,

we mention here that for a mixture of electrolvtes K is defined b>

2
K is thus closely related to the ionic strength cu, which is defined by

2
x - 2 Z o z , the concentrations G are expressed in mo l/ un it volume Table 1

gives a few t\ pical values for 1 /K and u) for aqueous solutions of 25 C

TABLE 1

Debye-length at 25 C and ionic strength for a number of electrolvte solutions

1-1 electrolyte 1/K ^ 2-2electrol}te l/K W

G in mol/l m mol/J ^ in mol/1 m mol/1

10~5 1 0 x 10~7 1 0 x 10~5 10"° 5 0 x 10~8 4 0 x 10~5

10~3 1 0 x 10~8 1 0 x 10~3 10~3 b 0 x 10~9 4 0 x 10~3

KT1 1 0 x 10~9 1 0 x 10"1 10~] 5 0 x 10~10 4 O x 10"1



In non-polar or slightly polar organic solvents the solubility and the degree

of dissociation of electrolytes is usually much lower than in water. £ is also

lower for these solutions, but this does not compensate for the reduced solubility.

Consequently for electrolyte solutions in such organic solvents one generally has

to reckon with relatively thick double layers.

2.1 Poisson-Boltzmann equation for flat plates

If one deals with flat plates and if the potential does not vary in directions

parallel to the plate the Poisson-Boltzmann (from hereon abbreviated as P.B.)

equation takes the form

d24>/dx2 = (2z*a/~ e ) sinh(se^fK) (1-9)

where x is the coordinate perpendicular to the plate.

2.1.1 Potential-distance relation.

Obviously (1-9) has to be integrated twice in order to express ty in terms of

x, which has its origin on the particle surface. The first integration is performed

using the boundary conditions ̂  - 0 and dijj/d~ - 0 at x = TO. The result is

£r sinhOei|j/2^r) (1-10)

In the second integration the boundary condition jj = if; at x = 0 is introduced.

ty is called the surface potential. The result can be given as

o

Thus (1-11) is the general solution of the P.B. equation for flat plates. For

all potentials, that is in case z

be used and then (1-11) reduces to

small potentials, that is in case ze~<\, I'bkT "< I , the approximation tanh x " x can

^ = V0 exp(- KX) (1-12)

This equation shows that ijj = ij. exp(-l), when x = 1/K, illustrating why 1/K

is often called the thickness of the double layer. It is also easily proved that

in this approximation the center of gravity of the double layer is exactly at a

distance l/< from the surface. An increase in K makes the double layer thinner

("compresses the double layer") and causes the potential to change more rapidly

with the distance not only in the approximation (1-12) but also for the complete

eq. (I-I1).

In the derivation of (1-11) it has been assumed that the double layer is fully



developed, i.e. that the double layers of individual particles do not interfere.

However, in relatively concentrated dispersions interference can occur, a

phenomenon that is known as double layer overlap. This situation, which is

particularly relevant for colliding colloidal particles, requires integration of

(1-9) with adapted boundary conditions It has extensively been dealt with by
4

Verwey and Overbeek , to which monograph we refer for further details.

2 1.2 Surface charge density and capacitance. The result obtained in the

preceding section also enables us to derive a relation between the surface charge

density o and the surface potential ij; . Because a is compensated by the space

charge in the solution

a = - ƒ pdx (1-13)
o

Substitution of (1-3) into (I-13), taking into account that potential and

charge variations along the y- and s-coordmates are assumed to be absent, leads

to

a = £ £ r d ù/dx dx = - e e (dtb/dx) _ (1-14)
o or T o r r x=Qo

and insertion of (1-10) into (1-14) results in

a = / 8ne £ 1<T sinh(sey /2X77) (1-15)

For small values of i|) (I- 15) simplifies to

This actually is the equation for the capacitance per unit area (a / y ) of a

plane condenser with plate distance 1 /K . So again a physical meaning of 1 /K

emerges.

Differentiation of (1-15) with respect to ty provides the general equation for

the (differential) capacitance of the diffuse double layer

C = do /dy = Zne e z

(1-17)

KC e cosh(sey /2kT)

Equations (1-16) and (I-17) demonstrate that for a constant surface potential

the capacitance, and thus the surface charge increases with increasing HC or with

increasing electrolyte concentration.



2.2 Poisson-Eoltzmann equation for spheres

For spherical symmetry the P.E. equation takes the form

(Mr2) i- (r2 4̂ ) = (2zen/c £ ) sinh(2e<|)/W) (1-18)
al> dr o r

In contrast with the situation for flat plates this equation cannot be solved

analytically, except when the linearization for low potentials is applied. In that

case the result is

ij; = i|Ja(a/r) exp [-K(r-a)] (1-19)

where ijj is the surface potential of a spherical particle with radius a, and r

is the distance to its center. From a comparison of (1-12) and (1-19) it can be

concluded that for high values of Ka double layers around spherical particles can

be treated as if they have flat geometry.

From (1-19) it can rather easily be derived that for low surface potentials the

total surface charge Q of a spherical particle amounts to

Q = Aïï£ e a(l + Ka)* (1-20)
o r s.

Because Q = 4ira 0" it is obvious that for Ka ̂  1 , eq. (1-20) also reduces to

the corresponding equation, (1-16), for flat plates.

When the potentials are too high to allow linearization, numerical solutions

of (1-18) have to take the place of analytical ones. Extensive numerical data,

for a wide range of Ka-values and also including asymmetrical electrolytes , have

been tabulated by Loeb et al . . Space does not allow to cover them extensively in

this text. However, in fig. 2 some results for spheres are compared with those for

flat plates. These graphs visualize that for spherical symmetry the potential

falls off more rapidly than for flat plates, and that is more pronounced the

smaller the radius of the particle. It is also seen that for spheres as well as for

flat plates, bivalent ions are much more effective in compressing the double layer.

St igter formulated interpolation equations for the tables of Loeb et al . ,

whereas White recently published approxi mate analytical solutions . For finite

concentrations of the dispersed particles, again the possibility of double layer

overlap has to be taken into account. This has recently been done in numerical

calculations of Mille and Vanderkooi .

Examples of practical systems with spherical dispersed particles are emulsions ,

(monodisperse) latices, small surfactant micelles and some proteins.
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Fig. 2, Potential i(j as a function of the distance from the particle surface.
Lpper curves refer to il'o = 154 mV, lower curves to ij) = 51 mV
a) 10~^ M 1-1 electrolyte; drawn lines, flat plates; dashed lines: spheres with

a radius of 10 nm.
b) 10~3 M 1-1 electrolyte; drawn lines: spheres with a radius of 100 nm; dashed

lines' spheres with a radius of 10 nm.
c) spheres with a radius of 100 nm in 10~3 M 1-1 electrolyte (drawn curves) and

in 10~3 M 2-2 electrolvte (dasned curves).

2_L3_Po].sson-Boltzmann equation for cylinders

Polvelectrolytes are long chain polymer molecules containing a large number of

lonizable groups along the chain. Although in electrophoresis some polyelectrolytes

can occasionally be considered as impermeable or partially permeable spheres, most

polyelectrolytes, being linear molecules, can better be treated as (kinked)

cylindrical rods. Thus, for these cases it is essential that the P.E. equation is

solved for cylindrical geometry The Laplace operator then reads V = (l/r) x

d[r(dv/dr)]/dr. Just like in case of spherical particles the ensuing equation cannot

be solved analytically, so that one has to recur again to numerical procedures or
Q

to approximate solutions The first approximation was introduced by Dube and

Gorin . However, it suffers from the drawback that it is only valid for small

potentials. Of much wider applicability is the approximation introduced by Philip

and Wooding . These authors proceed by dividing the double layer into two parts,

the boundary between them being characterized by the value of Kr that makes ze^/sT



10

equal to one For the inner region it is assumed that all co-ions are absent, so

that the corresponding exponential term in the r h s of the P B equation can be

neglected In passing, it can be nentioned that exclusion of co-ions from regions

close to the central particle is quite a general phenomenon for any type of double

layer, it is known as negati\e adsorption As to the outer region the complete

linearized equation is used The system of equations thus arising can be solved

analytically Both Philip and Wooding and v d Drift have compared the results

of this approximation with exact numerical solutions and arrived at the important

conclusion that the available analytical solutions, although not being exact, have

such a degree of accuracv that they can safely be used for subsequent purposes, e g

in a theory of electrophoresis

A discussion on pol^electrolytes as charged linear particles must also include
13

the concepts of Manning Manning considers the particles as rods without a volume,

thus reducing the charge to a line charge It then appears that the linear charge

density cannot exceed a certain value and any dissociation above that limit is

offset by a "condensation" of countenons onto the line charge The extent of this

condensation is dependent on the charge number of the countenons and on the
14

ionic strength The remaining cylindrical double layer may then be treated using

the linearized Debve-Huckel theory

Mannings theory aims in particular at the explanation of thermod^namic

properties of polyelectrolytes and of the mobility of the counterions So far it

has not been used to estimate the electrophoretic mobility of the polyion

2 4 Modifications of the Poisson-Boltzmann equation

In the preceding derivation and integrations of the P B equation a substantial

number of assumptions has been made, e g that the ions are point charges and that

the dielectric constant is independent of the concentration and the (otten high)

electrical field strength These assumptions have been the subject of nanj critical

objections, a review of which has been given by Bell and Levine From extensive

theoretical studies these authors ' conclude that man> of the effects are

mutually compensating and that for flat plates the corrections to the P B equation

are not excessive for 1-1 electrolyte concentrations below 0 1 ̂  and surface

potentials not exceeding 75 mV Another aspect deserving attention is the assumed

homogeneous distribution of the surface charges However, despite the actually

discrete character of these charges and their often relatively large mutual

separations, it can be shown b> statistical mechanical arguments that the potential

distribution in the double layer nay be described by a continuum theory
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1.3 STERN-CORRECTION

Contrary to the assumption in diffuse double layer theory, ions do have a

finite size and treating them as point charges is a simplification. This finite

size shows up in the first place in preventing the center of the ions, so the

center of the charge, to approach the interface to distances smaller than the ion

radius. Therefore, in an actual situation a charge-free region is present between

the surface charge and the diffuse charge in the solution. Taking this aspect into

account eliminates the impossible consequence, implicit in simple diffuse double

layer theory, that concentrations at the surface can grow as high as 200 M. This
1 Q

improvement was first introduced by Stern , who also pointed out that counterions

not only interact with the surface by electrical forces, but frequently by chemical

forces too, in which case specific adsorption is said to occur. The surface charge

in then compensated by the sum of the charges in the diffuse and in the Stern-layer:

ao = - (as + ad) (1-21)

Following Stern, one usually describes a by a Langmuir isotherm. In its

simplest form, when only specific adsorption of counterions is considered, it reads

in the case of a negatively charged surface

(\/Ka) (1-22)

T is the total number of available adsorption sites per unit area, K a

proportionality constant and a the bulk concentration of the ions. <j) is called

the specific adsorption potential, although it is an energy-, rather than a

potential term. $ may discriminate between ions of identical charge number, thus

explaining such specific effects as the lyotropic order. Moreover, <J> may be a

function of the surface charge.

Stern's approach has since been refined, particularly by D.C. Grahame, who

introduced the conceptions Inner and Outer Helmholtz Plane. The specifically

adsorbed ions are in the I.H.P., the diffuse layer ends at the O.K. P. and these

two planes are in general not identical. For a detailed treatment of these notions

and of refined electrical double layer theories in general we refer to the
1 9

monograph by Sparnaay

Of course the presence of the Stern layer (frequently also called molecular

condenser) has important consequences for the potential distribution in the

solution. In fig. 3 the distribution has been sketched that goes along with the

presence of merely a charge-free layer. It can be seen that across the molecular

condenser the potential decays linearly from tf) to the value if) at the boundary

between Stern and Gouy layer. This implies that actually in all diffuse double

layer equations if) has to be replaced by ijj . Farther away from the surface than
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distance f rom interface

Fig. 3 Potential as a function of distance in the presence of a charge-free Stern
layer of thickness ô and a diffuse layer for x > c.

Vd the character of the Gouy layer is not altered e.g. with regard to the

compressing effect of K.

The overall value of the capacitance of the double layer, C, in the presence of

a molecular condenser results from the combination of the capacitances of Stern

and Gouy layer placed in series'

(1-23)

It can be inferred from (1-23) that C is dominated by the smallest of its two

contributions. Because o, is an increasing; function of the concentration and of ilJ,
d d

(cf. eq. (1-17)), •" wil] mainly reflect C. at low values of i|j and o, and C at

higher values of these parameters. In the latter case any dependence of C on o

will also become manifest.

1.4 EXPERIMENTAL VERIFICATION OF DOUBLE LAYER THEORIES

Double layer theories have been the subject of numerous investigations The

system most extensively studied in this respect has been the interface between

mercury and aqueous electroljte solutions Experimentally either electrocapillary
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curves or differential capacitances ivere measured. In some studies both approaches

were used and the results could be compared. For a review of all the conclusions
19

to be drawn from these data we refer to Sparnaay again. Suffice it to say that

in general the Stern-Gouy-Chapman picture has been confirmed.

In the mercury-aqueous electrolyte system the surface charge and the surface

potential are modified by applying an external voltage. In most colloidal systems,

however, the surface charge is obtained by adsorption of ions or - in particular

with proteins and other polyelectrolytes - by dissociation of surface groups. In

favorable cases the charge may be determined by chemical analysis e.g. by titration

techniques. Various oxides and the silver halides have been used for such studies

on the double layer. Among the latter silver iodide is most outstanding, because

it combines a relatively wide range of accessible potentials with the possibility

to relate direct double layer data to data on colloidal stability and electrokinetics.

In a recent review it has been outlined that for silver iodide the basic ideas

of current double layer theorv are also applicable. At the same time it is

observed that quantitative differences with mercury exist, that emphasize the

importance of the specific nature of the Stern layer. In fig. 4 some data

representative for silver iodide are reproduced. They illustrate, e.g., that at

-2• cm

MOO

-5

-U

-3

-2

-1

-100 -200 -300 mV

-+3

Fig. 4. Surface charge CQ as a function of surface potential
in aqueous KNOo solutions,

A - A 0.1 M X --- X 0.01 M

for silver iodide

O -- O 0.00 I M
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—3
lew ionic strength (10 M) and in the neighborhood of the point of zero charge

a progressively increases with (f> , in accordance with diffuse double layer theory

(e g eq (1-15)) At high ionic strength (10 M) the differential capacitance,

being the slope of the curves, is usually much higher than at low ionic strength

Because n is now dominated by the Stern layer its variation reflects the dependence

of C on c as was anticipated in the discussion of section 1 3s o F

In practical systems compression of the double layer results in an increase

of the charge and/or a decrease of the potential The precise conditions (e g the

amount of potential determining electrolyte and the total surface area) dictate

whether the surface charge or the surface potential remains constant, or that both

quantities are adapted, upon changing the ionic strength of the solution

I 5 THE POSITION OF THE SLIPPING PLANE IN ELECTROKINETICS

All electrokinetic phenomena deal with the tangential movement of particle and

surrounding liquid In discussing these processes it is important to know the

exact position of the slipping plane relative to the two phases Unfortunately,

no unambiguous statements can be made as to this position because a complete theory

on the slipping process is not available However, from a vast amount of

experimental data it may be concluded that the slipping plane does not coincide

with the particle surface, but is situated at some distance in the solution

Apparently a stagnant layer prevents displacement of the liquid close to the

surface However, this qualitative notion still leaves us with the question about

the exact position of the slipping plane and thus about the value of the potential

( the Ç-potential) at this position Considering double layer-, stability- and
2 1

electrokinetic data on silver iodide, Lyklema recently concluded that, although

exact answers still cannot be given, it remains a reasonable assumption to set

Ç equal to y,

The supposed equality of Ç and ifj of course implies that Ç is equally sensitive

to changes in surface charge, surface potential and ionic strength as iK is So,

here we have the justification for the ample attention given to diffuse double

layer theory in the preceding sections The relation between Ç and electrophoretic

mobility will be discussed in the following sec tions
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II. THE THEORY OF ELECTROPHORESIS

II.1 INTRODUCTION

The most simple theoretical approach to electrophoresis would lead us to expect

that the electrophoretic velocity, y, is equal to the force on the particle (charge,

Q, times field strength, E) divided by the friction constant, ƒ (ƒ - 6i\r\a for a

sphere of radius a in a medium with viscosity n) Or, introducing the mobility, U9

we would have

, -j
This approach, however, neglects the fact that the countercharge, -Q, is often

quite close to the particle surface and is subjected to a force, -Q*E. By hydrody-

namic interaction a substantial fraction of this counterforce it, transmitted to

the particle, thus reducing its electrophoretic mobility, often by one or more

orders of magnitude This hydrodynarmc effect is called electraphoretic retarda-

t^on. Moreover, since particle and countercharge move in opposite directions, and

a certain time, the relaxation time T, is required to replace the countenons that

have moved away by new ones, the double layer is distorted This distortion creates

a field opposite to the applied field, E, and this relaxation field slows down the

particle by electfio 'interaction. The relaxation effect is usually not as large as

the electrophoretic retardation, but a reduction of the mobility by 10-50% is not

exceptional.

The main difficulty in the theory of electrophoresis is the correct calculation

of these two retarding effects.

Theoretically, the electrophoretic mobility is expected to be independent of

the field strength, as long as the latter remains below 10000 V cm , and this is

confirmed empirically. We shall limit our discussion to low field strengths.

II.2 ELECTROPHORESIS OF SPHERICAL PARTICLES

We shall deal with the electrophoresis of spheres fairly extensively, not be-

cause most particles are spherical (although emulsions, latices, micelles and

some proteins offer good examples), but because this case has been studied so

thoroughly. To begin with, we omit the relaxation effect (i.e. we treat the double

layer as undistorted) , but it will be included later in this section.

2.1 Method of Huckel and Onsager
22

Closely connected with his work with Debye on the conductivity of strong elec-

trolytes, Huckel published a paper on the electrophoresis of the sphere In this

paper he solved the Navier-Stokes equations for the stationary motion of a sphere

surrounded by an electrical double layer in an anplied field, E, and found for the

mobility, u,



'A ~ o v *• ̂  ^^J->n

or rather, since he used non-rationalized three quantity equations, without a sepa-

rate electrical dimension,

6irn

In these equations ç is the surface potential (more precisely, the potential at

the slipping plane) and n is the viscosity of the liquid.
24

A few years later, Onsager presented a simple and illuminating derivation of

eq.(II-2) that we shall repeat here. The ionic atmosphere around the particle can

be divided in concentric spherical shells of radius, p, and thickness, dr, as shown
2

in figure 5. The field, E, exerts a force kvf pEdr on the shell and this results in

the shell moving with a velocity, y, with respect to its surroundings, but drawing

Fig. 5. Particle with radius a, surrounded bv an ionic atmosphere, consisting of
spherical shells, one of which is shown, in an electric field, a.
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everything (liquid and particle) within it along. 0 is found by the application of

Stokes' law.

. 4rrW
OTTir

The total ionic atmosphere gives its innermost layer and thus the particle a velo-

city

_ f 4i,r2ogdr _
atm j biTTir

a

The field, acting on the particle charge, Q, gives the particle a velocity V

with respect to its immediate surroundings

- r -
part 6 irr a

The net velocity of the particle with respect to the liquid at infinity, V , is the

sum of (II-4) and (II-5) , which counteract one another, since o and Q have opposite

signs. The atmosphere decreases the velocity of the particle.

" / - / - \i-i-vjoTina ; emir
a

This expression is easily transformed into (II-2) by using

2
Q = - 4TTP pdr (II-7)

J

which expresses the electroneutrality of particle plus atmosphere and by applying

Poisson's law for spherical symmetry:

— 2~ 8?
r

The transformation runs as follows :

, 2 8*. 2£rEo

which proves eq.(II-2a).

Remarkably enough, neither the size of the particle nor the thickness of the

double layer shows explicitly, if the mobility is expressed as a function of the

surface potential, ç.
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2.2 Smoluchowski's equation

Already in 1903 and especially in 1914, von Smoluchowski derived an equation

very similar to Huckel's eq.(II-2b), but differing from it by having 4rr instead of

ÖTT in the denominator.

u (Smol.) = (11-10)

In his very elegant derivation, which applies to particles of arbitrary shape,

Smoluchowski assumes that the double layer is thin compared to any dimension of

the particles and that the applied field is distorted so as to run parallel to the

particle-liquid interface at that interface and close to it (see fig.6).

As a consequence of the distortion of the field, the atmosphere is on the aver-

age in a field smaller than E and thus it retards the particle less than in Huckel's

and Onsager's calculation.

Fig. 6. Illustrating that a thin double layer (S for Smoluchowski, l/K«a) is in
the distortion region, whereas a thick double layer (H for Huckel, 1/« » a) is
mostly in the undisturbed field.
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Eq.(11-10) with the sign reversed is also valid for electro-osmosis, as Smolu-

chowski demonstrated as follows. An electric field, E, is applied parallel to the

interface between a solid and a liquid. The solid carries a surface charge compen-

sated by a diffuse double layer in the liquid. We consider a thin layer of liquid

of area, A, and thickness, dx, parallel to the surface at a distance, X. The elec-

tric field E exerts a force, ApEdx, on this layer. The viscous friction tends to

retard the layer with a force, -Ar\dv/dx at the plane x, whereas it tends to acce-

lerate it with a force +/lii(du/dx) at the plane x+dx, where V is the velocity

of the liquid parallel to the interface. In the stationary situation, the net

force on the layer is zero, or

ApEdx - 4n (du/da:) + An(dV/dx) = 0 (11-11)

2
or: A(pEdx + n ̂ -j àx) = 0 (11-12)

dx

2 2
With P = - Ere d fy/dx we find:

E e Ed2ty/dx2 = nd2v/dx2 (11-13)
r o

A first integration with d^/dx = dv/dx = 0 for x •+ °° leads to

c^oEd<ii/dz = ndv/dx (11-14)

The second integration with i|i = Ç and V = 0 for x = 0 and il = 0 and V = V (electro-

osmosis) for x -*• °° gives

V(electro-osmosis) _ r o
_ ^ ( 1 1 - 1 5 )

2.3 Henry's contribution

A few years after the appearance of Hückel's paper , Henry showed conclusive-

ly that the Smoluchowski approach is correct for thin double layers (K£ » 1), and

the Huckel-Onsager equation is correct for thick double layers (ica « 1). Henry

bridged the gap and gave equations for intermediate values of KO both for spheres

and for cylinders, using the linearized Debye-Hückel approximation (eqs.1-7,1-19)

for the structure of the double layer. For that reason, and because he neglected

the relaxation effect, his results are only valid for small values of ç. Figure 6

illustrates the different influences of the field distortion for thin and for

thick double layers, and figure 7 gives a graphic representation of Henry's results.

Table II gives a few numerical values of 3ün/2e E c for the non-conducting

sphere.
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TABLE II

f(ica) = 3u(sphere) n/2c e ç as a function of Ka

Ka 0.1 0.3 l 3 5 10 20 50 100 1000

f(KO) 1.000545 1.00398 1.0267 1.1005 1.163 1.25 1.34 1.424 1.458 1.495

The cases

a) no field distortion or conductivity of sphere and medium are equal, and

b) the perfectly conducting sphere

have hardly any real practical significance, since the smallest amount of pola-

rization is sufficient to prevent the current to cross the particle medium inter-

face.

cylmder^field

sphi

'no field
distortion

conducting sphere,

\

001 01 1 10 100 1000

3— Ha ( logarithmic scale)

Fig. 7. Eleccrophoretic mobility for spheres and cylinders as a function of
). Debye-Huckel linearization (eq. 1-7) used.
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2.4 The relaxation effect

So far, we have neglected the distortion of the ionic atmosphere, which leads

to the relaxation effect. Figure 8 illustrates how an originally symmetric atmo-

sphere, which is forced to move with respect to the particle,is dispersed at one

side and rebuilt at the other, but with a time lag, which causes the atmosphere

to become asymmetric, creating a field, AF, opposed in direction to the applied

field E and slowing down the particle.

The actual calculation of the relaxation field is difficult. It already formed

one of the more difficult aspects in the Debye-Hückel theory, where it was pos-

sible to consider the ions as point charges.

The great difference in size between the particle and the atmospheric ions and

the necessity to go beyond the linear approximation of the P.E. equation make the
9 7 O Q

problem all the more difficult. In the nineteen forties, Booth and Overbeek

formulated solutions in the form of expansions in a power series of increasing

powers of ze^/~kT, which showed that the relaxation effect is particularly import-

ant in the region 1 < <a < 10 and that it vanishes at low and at high values of KO.
2 9 . . .

Later, Wiersema et al. applied a computerized numerical procedure to solve eight

simultaneous differential equations (three components of the liquid velocity,

pressure in the liquid, concentrations of cations and anions and local potential

0

3

0

0 ® e

© Q ©

0

©

no f i e l d a p p l i e d

def ic i t over
d l in rest
is rebuilt

here

•*-€>

AE, caused by asymmetry

E applied

Fig. 8. Illustrating schematically the formation of the relaxation f ield, AB.
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E =

3T|Fu

001 10 100 1000

a ( logarithmic scale)

Fig. 9. Dimensionless electrophoretic mobility, E, as a function of ra for a
series of values of the ç-potential. The electrophoretic mobility

,, =
 2ErEoH E _ The curves are given for ç/CïïT/*1) = rj (k" l e) = l, 2, 3, 4, 5 and 6.

"

inside and outside the sphere, using the complete P.B. equation (1-6)) in succes-

sive approximations. They confirmed the results of Booth and Overbeek for low val-

ues of ç and extended the calculations to 2; ̂  150 mV. Figure 9 gives their re-

sults for particles embedded in 1 - 1 electrolytes of conductivity equal to that

of KC1. The influence of the ionic mobility proved to be of only secondary im-

portance. For other charge numbers of the electroljte and for other ionic mobili-
29

ties, the reader is referred to the original paper or to a more condensed ver-

sion30. It is obvious from figure 9 that at high and at low KO the mobility and

C-potential are nearly proportional and that tnis is also true at intermediate

values of «7 for low mobilities and low Ç (sav ç< 1.j ~ ̂ 40 mV). But for high

c-potentials and intermediate values of r.a (sa> 2 KO. < 50) the mobilities become

nearly independent of Ç. In that region electrophoresis is not a good method to

obtain information on surface charge or surface potential.

In most practical situations, it is essential to take both electrophoretic

retardation and relaxation effect into account, although it is often possible to

use analytical approximations instead of the computer values of figure 9, see' .
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2.5 Stern layer and slipping plane

It should be emphasized that all models treated above describe the particle as

a rigid sphere, with a double layer containing point ions which may approach the

surface infinitely closely. A more realistic model with finite size ions leaving

a "Stern layer" of thickness, 6, free of charge, is still covered by the calcula-

tions, if it is assumed that the slipping plane (surface of shear) coincides with

the O.K.P. at a distance 6 from the surface and that the layer between the O.K.P.

and the surface does not contain any mobile ions. In that case, Ç-potential and

Stern-potential are identical. For locations of the slipping plane further out-

side than the O.K.P., electrophoresis leads to a ç-potential which is lower than

i|i., but if the slipping plane is closer to the surface than the O.H.P. , the Ç-

potential cannot be found from Wiersema's theory since it does not take a charge

free layer that is still mobile into account.

II.3 ELECTROPHORESIS OF CYLINDRICAL PARTICLES

When considering the electrophoresis of cylindrical particles, two facts should

be kept in mind. In the first place, orientation is important, and secondly, most

considerations about cylinders neglect end-effects, the results being obtained by

considering infinitely long cylinders. The cylinder may be an acceptable model for

rod-like particles such as tobacco mosaic virus, and for stiff or flexible long

chain polyelectrolytes for which DNA and polyacrylic or polymethacrylic acid are

examples.

3.1 Neglecting the relaxation effect

Henry , again neglecting the relaxation effect, solved the hydrodynamic equa-

tions for two orientations of the cylinder, viz. parallel or perpendicular to the

applied field. His results are given in figure 7 for cylinders of radius a. For a

cylinder parallel to the field, the field strength has the value E and is parallel

to the surface everywhere in the solution. Therefore, Smoluchowski's equation (11-10)

applies, irrespective of the value of KO. The field around a cylinder in perpendi-

cular orientation is distorted in a similar way as sketched in figure 6, and this

results in an electrophoretic mobility that depends on tea, with the Smoluchowski

value (11-10) at high KO and only half that value at low KO..

E C E E C

w(cyl.lff) = -~ = °. r (11-16)
Ka-»o 8irn 2n

It should further be realized, that at the extreme values of KÜ eqs.(II-2),(II-l0)

and (11-16) are valid, even if ç is large (| et;/kT\ >1) and that this is also true

for the cylinder parallel to the field at any Ka. But the transition for interme-

diate values of Ka, as given in fig. 7 , has been found by Henry using the linear

Debye-Hückel approximation and is, therefore, not strictly valid for high ç. How-

ever, the necessary corrections are smaller than those for the relaxation effect.
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3.2 Averaging over different orientations

For a cylinder oriented at an arbitrary angle, 6, between its axis and the

field» the field may be split into two components, one, E cos 8 , parallel to the

cylinder axis and one, E sin 6 » perpendicular to it Each of these components re-

sults in a velocity of the cylinder, one parallel and the other perpendicular to

the axis Vectorial addition of these two velocity components gives the net velo-

city of the cylinder and when this velocity is averaged over a random distribu-

tion of orientations, a simple result is obtained, viz.,

1 2
u (average over all orientations) = — u ,. + -$ u.. (11-17)

where y and u. are the mobilities for parallel and perpendicular orientation
31

resp . De Keizer, Van der Drift and Overbeek have shown this relation to be valid
32

in the absence of relaxation. Stigter has extended the proof so as to include

the relaxation effect

At low field strengths, as long as Ohm's law is obeyed, the field does not

orient the cylinder against the randomizing effect of Brownian motion. Similarly,

a flexible polyelectrolyte coil may be considered as a collection of cylindrical

pieces with on the average random orientation

3.3 Relaxation effect for cylinders
32 29

Stigter , using an approach very similar to that of Wiersema et al. , compu-

ted the mobility of the cylinder perpendicular to the field, including the relaxa-

tion effect He further concluded that for parallel orientation the relaxation

effect may be neglected, and then using eq (11-17) applied his results to poly-

electrolytes such as DNA, PAA and PMA. In the middle range of xa he obtained relaxa-

tion effects as high as 20%

Shortly before, Van der Drift had used Philips' and Wooding's description

of the cylindrical double layer at high potentials (et,/kT > 1 ) to improve Henry ' s

mobility values, but he applied a semi-empirical method (Moller et al ) based

on the essential equality of the relaxation force on the particle and on the

charge in its atmosphere, to correct for the relaxation effect. For half-ionized

PMA, Van der Drift found relaxation corrections of 40-60%.
32

We conclude that until Stigters results are completely published, the theo-

retical interpretation of the electrophoretic mobility of cylindrical particles

must be limited to low ç-potentials, using eq (II-17) for averaging over orienta-
34

tions, and using the numerical values obtained by Abramson, Gorin and Moyer for

HenryT s equation for the cylinder perpendicular to the field
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II 4 ELECTROPHORESIS OF THE POROUS SPHERE

The electrophoresis of polyelectrolytes has been interpreted in terms of the

randomly oriented cylinder as was mentioned in the previous section An older

model is that of the porous sphere The porous sphere, with the solvent flowing

more or less freely through it, was quite a successful model for hydrodynamic pro-

perties (viscosity, diffusion, sedimentation) of solutions of uncharged polymers

The model has been extended to polyelectrolytes, the assumptions being made of a

uniform or Gaussian distribution of the fixed charges, a silimar distribution of

the chain elements, each element having the same friction factor with respect to

liquid flowing past it and a Debye-Huckel type interaction between the free, low

molecular weight ions and the fixed charges

If the relaxation effect and the deformation of the applied field by the dif-

ference in conductivity inside and outside the porous sphere are neglected, the

further mathematical treatment is simple Overbeek and Stigter obtained the

result that for small id? (A is the radius of the sphere) the countercharge has no

influence on the mobility and the sphere moves with the friction factor of a part-
O£ O T

lally drained coil (Debye and Bueche , Brinkman )) For large KÄ, the sphere

behaves as freely drained, its friction factor is the sum of the friction factors,

f, of the chain elements and the counterions move through the porous sphere with

the same velocity that they would have in free solution Figure 10 shows the

transition between the two cases

Nf
~z<r

Fig 10 Electrophoretic mobility of a porous sphere with radius A, charge Ze,
containing V elements, each with a friction constant, f
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Although the model is in qualitative agreement with experiments, close considera-

tion shows that it is only realistic for compact, highly crosslinked polymers

The usual polyelectrolyte coils are so open, that a uniform distribution of chain

elements, fixed charges and countercharges is quite unrealistic. A much better

model is that of a loosely coiled cylinder surrounded by a fairly compact double

layer as shown schematically in figure 1 1 .

Fig. 11. Coiled cylinder surrounded by a double layer.

II.5 PARTICLES OF ARBITRARY SHAPE

After the discussion of the difficulties arising in the formulation of an elec-

trophoresis theory for three rather simple models, one might wonder whether any

useful interpretation can be given for particles of arbitrary shape. In fact, how-

ever, relatively simple interpretations are possible, at least for the limits of

very high and very low values of K (i e. of the electrolyte concentration)

5.1 Small K

If the largest linear dimension, £>, of a particle is much smaller than l/<, or

in other words Kb« 1 , ionic atmosphere effects, both electtophoretic and relaxa-

tion retardation, are bound to be minor, and the mobility is simply equal to the



charge, Le, divided by the friction factor, î,

u = j- (11-18)

The same friction factor can be found from rates of diffusion or sedimentation,

and since the charge may be determined by analysis, eq.(11-18) can be tested or

be used for the calculation of one of its three elements from the two others. In

aqueous media, however, it is difficult to decrease K below (100 nm) , and thus

the case K£> « 1 only applies to small particles (say < 10 nm or even < 1 nm) .

In non-polar media, where 1/K may easily be several ym, eq.(11-18) is the obvious

one for the interpretation of electrophoresis.

5.2 Large K

In the context of irregularly shaped particles, large K means KG» 1, where CL

is the smallest local radius of curvature of the particle surface. In that case,

the Smolucho^ski equation (11-10) applies, even at large charge and Ç-potential.
••> Q

Overbeek has shown that under these circumstances the relaxation effect becomes

negligible (see also our figures 7 and 9). The electrophoretic retardation, how-

ever, is then quite large, slowing down the mobility as compared to eq.(11-18) in

tne ratio of about 1/Kb. It is in particular under these conditions of large

particle size and/or thin double layers, that the C-potential has such a unique

position in the interpretation of electrophoresis.

II 6 ELECTROPHORESIS AS A FlIXCTION OF THE CHARGE OF THE PARTICLES AND OF THE

POTENTIAL DIFFERENCE BETWEEN THE PHASES

So far, v,e have interpreted the electrophoretic mobility nearly exclusively in

terms of the C-potential, with some correction for relaxation. Unfortunately,

there is no independent way to measure ç, and no way either to determine the exact

location of the slipping plane. So it should be asked whether an interpretation

in terns of the surface charge, rather than the ç-potential, might not have advan-

tages One obvious advantage is the fact that the particle charge is carried by

ions, and thus can be determined in principle by chemical analysis. Moreover, the

charge can be manipulated by addition of easily adsorbable ions, by a change in

pH, or by chemical reaction. On the other hand, the charge as determined analy-

tically, a , and the electrokinetic charge, 7 , need not be identical, and in gen-

eral are not identical, the difference being formed by that part of the atmosphe-

ric charge that is situated between the surface and the slipping plane. Neverthe-

less, a comparison between q and g remains of interest, since it gives at least

some information on the location of the slipping plane At low ionic strength,

the difference between g and a may be expected to be small, but at high ionic

strength it may be large due to the compression o£ the double la^er and the steep
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decay of potential with distance at tigh ionic strength. Figure 12 illustrates

this.

potential

distance from the surface

Fig. 12. Illustrating the influence of compression of the double layer on Ç.
The dotted line represents the slipping plane.
I. Low ionic strength
II.High ionic strength. Surface potential, v , as in I.
ELLHigh ionic strength. Surface charge, a , as in I.
The surface charge density is proportional to the slope of the potential dis-
tance line at x = 0 (eq.I-14). It can be seen that q,(l)^q (I) but q (II,III) <

The ç-potential may also be compared to the surface potential, Jj , which in many

cases is equal to the potential difference between tne particle phase and the

solution phase, as it contributes to the e.m.f of a galvanic cell. Since the ab-

solute value of such a potential difference is not accessible to measurement, the

point of zero charge should be taken as the point where J. and ç are both zero.

Such a comparison, if made for a number of ionic strengths, may show whether the

assumption that ç ̂  if , (the Stern-potential) is justified (cf. Lyklema )

Not enough work has been aimed in this direction, and what has been done has

not always been too successfully interpreted. One conclusion might be that the

slipping plane shifts away from the surface with decreasing ionic strength.

The electrophoretic nobility and the Ç-potential reflect changes in ̂  , Q , K ,

and also in the detailed composition of the solution, since adsorption of ions

or neutral substances nay affect Ç.



On the whole, changes in the surface potential j> are reflected somewhat more

weakly (say as a fraction between 0.5 and 1) in Ç. Increases in the ionic strength

lead to a pronounced decrease in Ç, the more so the higher the charge number of

the counterions, this on account of the term exp(-s ei|./kT) in the P.E. equation

(eq.I-1,1-6).

Changes in the c-potential may further be used to determine the presence and

the extent of adsorption. Adsorption of ions changes the surface charge directly,

adsorption of neutral substances may lead to a change in the charge as a secondary

effect and may also shift the location of the slipping plane.

II-7 APPLICATIONS

At least two types of applications of the theoretical knowledge on electropho-

resis may be envisaged, viz. a. the comparison of calculated and experimental

values of the mobility, with the aim of obtaining a better understanding of the

size and shape of the particle and especially of the quantitative structure of

its double layer, and b_. the improvement of electrophoretic separations by mani-

pulating the mobilities

7.1 The interpretation of electrophoretic mobility in terms of properties of

particles or molecules and of their double layers

The conversion of the electrophoretic mobility into a c-potential or an elec-

trophoretic charge can be used to check the validity of certain models of part-

icles or molecules, e g. to check whether the rheology of DNA is sufficiently

well described by a cylinder model with a suitablv chosen radius. Adsorotion of

ions changes the charge of the particle and adsorption isotherms can be obtained

from electrophoresis. It has been observed that the adsorption of proteins on a

variety of particles often changes the electropnoretic mobility from its original

value for the bare particles into one very similar to that of the free protein,

indicating a shift of the slipping plane to a position comparable to that of the

free protein.

Such applications require absolute values of the mooility. Consequently, they

cannot be based on paper- or gel-electrophoresis, where electro-osmosis, adsorp-

tion of the particles and the incluence of tortuosity are hard to quantify. More-

over, a series of values of 'u at different compositions of the solution is re-

quired to disentangle the influence of the Stern-layer, of adsorption of ions,

of the location of the slipping plane, etc

Although this type of application of electrophoresis has led to interesting and

useful results, even in the most favoraole cases doubts remain, connected with the
39

uncertainty in the location of the slipping plane (cf. Lyklema ).
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7.2 Improvement of electrophoretic c eparations

In electrophoretic separation processes, we use the difference in mobilities

betx^een different types of particles For better separations x\re are interested in

increasing the absolute value of the differences between mobilities, although

sometimes the relative differences aie also important.

To begin with, we review the essential relations. The mobility is nearly pro-

portional to the ç-potential with a telatively modest correction for relaxation,

largely determined by k, at least when Ç is not too large. For high ç and inter-

mediate values of Kß, the mobility becomes quite insensitive to Ç. £ itself in-

creases less than proportionally with the charge, with a very strong influence

of K. Size and shape of the particles have a relativelv minor influence on the

mobility for a g^ven surface charge density The teuro erature affects the mobility

mainly through its influence on „ ana r, but the effect will not be different for

different particles

The particle charge depends strongly on the activity of potential determining

ions, in many cases the pH, and occasionally on the specific adsorption of ions,

e.g. detergent ions.

Electrophoretic separations are based upon a natural difference in surface

charge density and ç-potential between different types of particles. We want to

enhance these differences by a suitable choice of tne solution

Separations are carried out preferably at moderate to lov» ionic strength,

since high ionic strengths combine the drawbacks of low mobilities, high heat

production, evaporation and convections

At moae^aJe lort c strength, say 0.1 M, I/K is about 1 nm, in many cases K<2 > I ,

Ç-potential s are fair13 low, the mobilities and the differences between them are

not ver> large, but for proteins and other biopolymers a moderate ionic strengtn

corresponds to the natural environment and may be essential for preventing dena-

turation.

On changing the pH or the activity of other potential determining ions, B,

usually one or more fairly narrow regions of pH or pB can be found, where surface

charge and potential change rapidly. Ue mention the region around the pK of acidic

or basic surface groups or the region around the p.z c. of metal oxides, hydroxides,

or silver halides. Good conditions for separation are often found near one of the

ends of such a region of steep change.

At Io(u L,O* *o st^ergfh r-potentials and mobilities are higher. In general this

leads to larger differences in mobility, but it should be clear from figure 9

that the relaxation effect has a kind of buffering action on the mobilities at

high c-potentials in a fairly broad range of KCE--values. Nevertheless, if other

conditions (such as avoiding dénaturât ion) pernit, electrophoresis at low ionic

strength has the additional advantage of low ohmic losses and thus the possibility

of applying nigh voltages.
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In choosing the best circumstances for separation, the qualitative rather than

the precise quantitative aspects of the theory are important, but to use these at

greatest advantage, the general features and the orders of magnitude involved in

the theory should be well understood.
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