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A theory for the stabilization of dispersions by adsorbed macromolecules (“protective action”) is given in 
terms of a volume restriction repulsion, due to the decrease of configurational entropy of adsoPbed loops and 
tails on the approach of a second particle, an osmotic repulsion due to the mixing of the adsorbed polymeric 
clouds when two particles approach each other (in a very poor solvent this can be an attraction effect), and 
the van der Waals attraction between the particles. The adsorbed macromolecules are described by a random 
walk model. The interaction between 
two flat particles covered by adsorbed macromolecules is described using the Flory-Huggins approximation 
for four different modes of attachment of the macromolecules: equal loops, equal tails, and the loop size dis- 
tributions found before for an adsorbed homopolymer and for an adsorbed copolymer. Interaction curves 
are found which predict reversible flocculation and the occurrence of thixotropic systems as intermediates 
of flocculated and deflocculated systems. The main parameters determining the interaction are the average 
loop (tail) size and the size distribution of these loops (tails), the amount of polymer adsorbed, the quality 
of the solvent, the Hamaker attraction constant, and the particle size. For flat particles the stability is in- 
versely proportional with the square of the linear dimension of the particles, whereas for spherical particles 
in Derjaguin’s approximation the stability is shown to be inversely proportional with the radius of the spheres. 
In general, stabilization is enhanced by long adsorbed chains and an extreme size distribution, a high amount 
of polymer adsorbed, a good solvent, a low Hamaker constant, and a small particle size. These predictions 
appear to be in reasonable agreement with the only scarcely available experimental evidence on this subject. 

No molecules are adsorbed on more than one particle (no “bridging”). 

Introduction 
Adsorbed nonionic macromolecules are known to  sta- 

bilize emulsions and suspensions in aqueous and non- 
aqueous media. Examples2 are alkyd resins, cellulose 
derivatives, uncharged proteins, and block copolymers 
which are used for the stabilization of pigment dis- 
persions, latices, emulsions, etc. The mechanism by 
which adsorbed polymers can keep the particles dis- 
persed in solution by counteracting the ever-existing 
attraction, due to  van der Waals forces3 and occa- 
sionally to magnetic  force^,^ is of two kinds.5 

A macromolecule adsorbed on a colloidal particle 
loses configurational entropy on the approach of a sec- 
ond particle. This is called the volume restriction ef- 
fect. 

(11) When the layers of adsorbed macromolecules 
on the two particles interpenetrate, the higher polymer 
segment concentration between the particles will lead 
to  a local “osmotic pressure” in most cases counteracting 
the approach. 

The volume restriction effect has a certain resem- 
blance to the concept of rubber elasticity, as if the dis- 
persion is stabilized because of an elastic wrapping6 
around the particles. Mackor and van der Waals7a8 
have shown for rather short, rodlilte molecules that  
when the loss of configurational entropy leads to desorp- 
tion the interfacial free energy rises in agreement with 
Gibbs’ adsorption isotherm. Using a Monte Carlo 

(I) 
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simulation technique permitting only self-avoiding 
walks on a cubic lattice, Clayfield and Lumbg have 
calculated the rise in free energy due to  volume restric- 
tion for macromolecules adsorbed on an impermeable 
interface. Their calculations apply to  irreversibly 
adsorbed “tails” (chains terminally adsorbed with one 
end group) and to copolymers attached to  the particles 
by anchor segments in a solvent having no net inter- 
action with the unadsorbed part of the molecule. Fis- 
cherlo was probably the first to  point out that the in- 
crease of the free energy due to  the overlapping of seg- 
ment clouds should be taken into account. For irrever- 
sibly adsorbed tails Meier6 considered both effects I and 
I1 using random flight statistics to  calculate the volume 

(1) Address correspondence to  this author a t  the Department of 
Chemistry, Cornel1 University, Ithaca, N. Y .  14850. 
(2) J. Lyklema, Adean. Colloid Interface Sci., 2, 65 (1968). 
(3) (a) B. Derjaguin and L. D. Landau, Acta Physicochim. U R S S ,  
14, 633 (1941); (b) E .  J. W. Verwey and J. Th. G. Overbeek, “Theory 
of the Stability of Lyophobic Colloids,” Elsevier, Amsterdam, 1948. 
(4) J. P. McTague, J .  Chem. Phys., 51, 133 (1969); J. R. Thomas, 
J .  A p p l .  Phys., 37, 2914 (1966). 
(5) D. J. Meier, J .  Phys. Chem., 71, 1861 (1967). 
(6) K. Jackel, Kolloid-2. 2. Polym., 197, 143 (1964). 
(7) E. L. Mackor, J .  Colloid Sci., 6 ,  492 (1951). 
(8) E. L. Mackor and J. H. van der Waals, ibid. ,  7, 535 (1952). 
(9) E. J. Clayfield and E. C. Lumb, J .  Colloid Interface Sci., 22, 
285 (1966); Macromolecules, 1, 133 (1968). 
(10) E. W. Fischer, Kolloid Z., 160, 120 (1958). 
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restriction effect and the Flory-Huggins approach for 
the osmotic effect. He showed that the osmotic ef- 
fect contributes substantially to the stabilization, es- 
pecially a t  high surface coverage of polymer. This 
originates from the fact that  the volume restriction 
effect increases linearly with the amount of polymer 
adsorbed, whereas the osmotic effect increases quad- 
ratically, being due to the interaction between the 
two polymeric clouds. Due to an incorrect derivation 
of the density distribution" for the segments of the ad- 
sorbed chains, Meier's values for the osmotic effect are 
somewhat too low. 

I n  this paper we have corrected this error and ex- 
tended the theory to systems in which the polymer 
molecules are adsorbed with many segments, connected 
by loops dangling in solution. With the results of our 
previous paperl2 on the configurational statistics of ad- 
sorbed macromolecules on the approach of a second 
interface, the repulsion due to volume restriction and 
osmotic effects is calculated for four different modes of 
attachment of the macromolecules : equal tails, equal 
loops, a loop size distribution derived by Hoeve, et a1.,13 
for a homopolymer where all the segments have a priori 
an equal chance to become adsorbed, and a loop size 
distribution12 for a copolymer attached to  the surface 
with anchor segments randomly distributed along the 
chain. 

The repulsion thus calculated is then compared with 
the van der Waals attraction between the particles. 
The independent parameters determining the stability 
are listed and the effect of these parameters on the sta- 
bility is discussed. 

Model 
Our previous results12 on the configurational be- 

havior of adsorbed macromolecules on the approach of 
a second interface are based on random flight statistics 
on a six-choice cubic lattice and the spatial dimensions 
are expressed in units (iP)'/' where i is the number of 
segments each with length 1. I n  this paper we need 
the real dimensions of polymer chains and therefore we 
will equalize (i12)'/' with the experimental root mean 
square end-to-end distance (Y~)'/' of a chain; thus 
i12 = ( r 2 ) .  The expansion a of the chains due to long- 
range intramolecular interactions is taken into account 
by using (r2)l/ '  = a ( ~ ~ ) ~ ~ / '  where ( T ~ ) ~ ' / '  is the unper- 
turbed root mean square end-to-end distance to be mea- 
sured in a 0 solvent. 

As previously12 we will treat the case of the interac- 
tion between two flat interfaces. Extension to the case 
of the interaction between two spheres highly compli- 
cates the mathematics. Ottewill and Walker14 have 
calculated the osmotic effect for two spheres covered by 
rather short polyethylene oxide chains approximating 
the density distribution by a step function. This, 
however, is too crude an approximation for a quantita- 
tive analysis.'j As before12 our argument is limited to  

cases where each macromolecule is adsorbed only on one 
particle. Extension to cases of macromolecules ad- 
sorbed on more than one particle would lead to a quan- 
titative treatment of sensitized flocculation.le This, 
however, is beyond the scope of this paper because of 
the several simultaneous kinetic processes involved. 
As usual17 we assume the polymeric clouds around the 
particles to be interpenetrable whereas the particles are 
thought of as impenetrable interfaces. 

In general, macromolecules adsorbed on colloidal 
particles will form loops with a certain size distribution. 
The loop size distribution for an adsorbed homopolymer 
is given by12 

(1) 

where nl is the number of loops of i segments per unit 
area, 5 the average number of segments per loop, n the 
total number of segments in the loops per unit area, and 
a E 0.7 (numerical constant). This loop size distribu- 
tion has originally been f o r m ~ l a t e d ' ~ ~ ' ~  in a slightly dif- 
ferent form for an infinitely long isolated macromole- 
cule on an infinite surface, neglecting interactions be- 
tween loops and solvent. Taking into account end ef- 
fects (each molecule may have one or two loose tails), 
R0el9 and recently Rfotomura and MatuuraZ0 have 
found that these tails may contain a considerable frac- 
tion of the adsorbed macromolecule. This seems to be 
confirmed by experiments on the thickness of the ad- 
sorbed layer,21,22 which suggest that in practically all 
cases investigated, the adsorbed macromolecules are 
attached to the interface by only a few segments with 
long chains protruding in solution. However, when 
the end effects are small eq 1 seems to be valid. An- 
other complication arises because of the fact that  for a 
homopolymer the quality of the solvent, the average 
size of the adsorbed chains and the amount adsorbed 
cannot be considered as independent parameters. 13,19-26 

ni = nap-1 /2 ( ; ) - l i - -8 /2  exp[ - 

(11) F. Th. Hesselink, J .  Phys. Chem., 73, 3488 (1969). 
(12) F. Th. Hesselink, ib id . ,  75, 65 (1971). 
(13) C. A. J. Hoeve, E. A. DiMarzio, and P. Peyser, J .  Chem. Phys., 
42, 2558 (1965). 
(14) R. H.  Ottewill and T. Walker, Kolloid-2. 2. Polym., 227, 108 
(1968). 
(15) For example, applying this approximation t o  the interaction 
between two flat interfaces gives that the "osmotic" force between 
the particles does not depend on the extent of the overlap. 
(16) V. K. La Mer, Discussions Faraday SOC. 42, 248 (1966); W. 
E. Walles, J .  Colloid Interface Sci., 27, 797 (1968). 
(17) P. J. Flory, "Principles of Polymer Chemistry," Cornel1 Uni- 
versity Press, Ithaca, N. Y., 1953. 
(18) R.-J. Roe, Proc. Nat.  Acad. Sci. U. S., 53, 50 (1965). 
(19) R.-J. Roe, J. Chem. Phys., 43, 1591 (1965); 44, 4264 (1966). 
(20) K. Motomura and R.  Matuura, i b i d . ,  50,  1281 (1969). 
(21) R.  R. Stromberg in "Treatise on Adhesion and Adhesives," 
Vol. I, R. L. Patrick, Ed., Marcel Dekker, New York, N .  Y . ,  1967. 
(22) E. Killmann and H. G. Wiegand, Makromol. Chem., 132, 239 
(1970). 
(23) A. Silberberg, J .  Chem. Phys., 48, 2835 (1968). 
(24) M. J. Schick and E. N. Harvey, Jr., Advan. Chem. Ser., 87, 
63 (1968). 
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The problem of the size distribution being unsolved, no 
theory can correlate these parameters correctly. Be- 
cause of these uncertainties we will use eq l only to ob- 
tain a qualitative picture of the stabilizing action of ad- 
sorbed homopolymers. In  our more quantitative dis- 
cussion we shall not investigate this case. It can be 
said beforehand that the error involved using eq 1 
will become more serious the shorter the adsorbed 
homopolymer and the higher the surface coverage. 

For a copolymer attached to the particle by some 
anchor segments randomly distributed along the chain, 
we have found, neglecting end effects, an exponential 
loop size distribution12 

ni = n ( ~ ) - ~  exp(-i/i) (2) 
The repulsion due to volume restriction and osmotic 
effects can now be calculated for particles covered by 
adsorbed homopolymers and adsorbed copolymers using 
eq 1 and 2 and also for particles covered by equal tails 
and equal loops. 

Volume Restriction Effect 
On the approach of a second interface adsorbed loops 

and tails lose configurational entropy. Previously12 
we have derived for this relative loss of configurations 
for a single tail, Rl(i,d) and for a single loop Re($) 

m 

Rl(i,d) = [exp{ -6v2d2/iZ2) - 
u = - - m  

exp{ -3(2v + 1)2d2/2d2] ] (3) 
and 

m 

Rz(i,d) = (1 - 12v2d2/iZ2) exp(-6v2d2/iZ2) (4) 
"3 - m  

where i is the number of segments per tail (loop) and d 
the distance between the interfaces. When two inter- 
faces both covered by Y (= n/?) tails (loops) per unit 
area approach each other, the resulting rise in free 
energy, AF,,, per unit area due to volume restriction is 
given by 

AFVR = -2lcT& ln R(i,d) ( 5 )  
a 

where k is the Boltzmann constant and T the absolute 
temperature, whereas for R(i,d) either eq 3 or 4 is to be 
substituted. For the case of equal tails (loops) nl = v 
whereas for a homopolymer and a copolymer n, is given 
by eq 1 and 2 ,  respectiveIy. Substitution of eq 4 into 
eq 5 and replacement of the summation over i by an 
integration gives 

with 

exp( -6v2d2/iZ2)di (7) 

1 -  

0.5 - 

0.2 - 

0.1 - 

0.0 5 - 
I copolymer 

I,,,,,,,, - 0.2 0.6 1.0 
d/V i I' 

Figure 1. 
(see eq 7)  due to the volume restriction imposed by a second 
interface at distance d / d G  for several modes of attachment of 
the macromolecules. Only the homopolymer curve (- - -) 
depends on i ;  it is calculated for i = 10. The curve for 
equal tails has been found before by Meier.6 The curve for 
a bridge (see ref 12) gives the free energy for a chain 
connecting two particles. 

The rise in free energy per average chain V(i,d) 

V(i ,d) gives the rise in free energy per average loop in 
units kT. It is evaluated as a function of d i d $  by 
numerical integration of eq 7 using an Electrologica 
X8 computer. For equal loops and d/dz 2 1 a 
good approximation20 for V(i,d) is given by 

V(i,d) = -2(l - 12d2/iZ2) exp(-6d2/iP) (723) 

In Figure 1 and more precisely in Table I the results 
are given for particles covered by equal tails, equal 
loops, and copolymers. Figure 1 also shows V(?,d) 

(26) The relevance of this point is easily demonstrated; e.g., raising 
the quality of the solvent for the adsorbed polymer generally in- 
creases the stability of the system (see Discussion) but it decreases 
the amount adsorbeda3~24 which effect tends to destabiliaation of the 
system. 
(26) For_equal loops the integration in eq 7 over i vanishes whereas 
for d / d i P  2 1 the summation over P converges rapidly. Equation 
7a is found by taking only the first terms of this sum (u = 0, kl), 
developing the logarithm in a power series, and neglecting the higher 
terms of this series. 
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Table I :  Values for the Dimensionless Volume Restriction Function, V(i,d) (eq 7), 
and Osmotic Function, M(;i,d) (eq 11), Independent of d/@P 

0 .6  
0 . 8  
1 . 0  
1 .2  
1 . 4  
1 .6  
1.8 
2 . 0  
2.5 

2,996 1.476 
1.284 0,339 
0.582 0.0561 
0.262 0.00578 
0.1118 0.00035 
0,0439 
0.01582 
0.00497 
0.00018 

2,030 
0.760 
0.307 
0,1282 
0,0542 
0.0231 
0.0109 
0.0041 

3.723 
2.397 
1.585 
1,043 
0,667 
0.406 
0.232 
0.127 
0.018 

2.974 3.428 
1.716 2.078 
0.837 1.280 
0.314 0.801 
0.0940 0.480 
0.0204 0.281 
0.0034 0.150 

0.081 

for adsorbed homopolymers. The curves of V(Z,d) 
against d / d $  for equal tails, equal loops, and copoly- 
mers are independent of the particular choice of i, 
whereas the curve for a homopolymer depends on 6. 
This is directly related to the fact that for the first 
three cases12 the root mean square extension of the 
segments from the interface, (x2)’/’, is proportional to 
(i) ’” whereas for a h ~ m o p o l y r n e r ’ ~ ~ ~ ~  (x2)’/’ is propor- 
tional to 3. Figure 1 will be discussed further in con- 
nection with the results for the osmotic effect. 

Osmotic Effect 
The increase in free energy, AFM, per unit area 

caused by the increased mixing of polymer seg- 
ments a t  the approach of two interfaces covered with 
polymeric material gives rise to  a local osmotic repul- 
sion between the particles. I n  spite of its shortcom- 
i n g ~ , ~ ~ , ~ ~  mostly due to ignored changes in volume on 
mixing, we will use the classical Flory-Huggins approxi- 
mationI7 to  evaluate this repulsi0n.~9 

Meier5 has derived for AF,  in this approximation 

AF, = kTV,2Vi-1(’/2 - X) X 

Here V, and Til are the volumes of a polymeric seg- 
ment and a solvent molecule, x is the Flory-Huggins 
interaction parameter, pa and Pa are the number densi- 
ties of the segments of the macromolecules adsorbed 
on interface A and B per unit volume, while suffix d and 
m , respectively, indicate the distance between A and 
B; the integration of (pa + pb)’ is to be performed 
over the interval between A and B. The quality of 
the solvent is characterized both by (1/2 - x) and by 
the expansion parameter a. Therefore we will express 
(I/? - x) in terms of a using Flory’s” relation30 

(9) 

With eq 9 me find from eq 8 taking into account that 

AFM = 2 ( 2 ~ / 9 ) ” / ’ ( a ~  - ~ ) ~ c T v ~ ( T ~ ) M ( ~ , ~ )  (10) 
where ( r2 )  = a2iP and 

M(i ,d)  = (r2)”‘ [ ld (fia)d2 dx -t 

Ld (f iafitJd dx: - s,” (fiaL2 dx] (11) 

The caret a t  the top of p indicates that  this f i  is normal- 
ized so that ifidx = 1. Equation 10 has been given 
before by Meier5 using slightly different symbols. 

Now we will derive f i n  for several modes of attach- 
ment of the macromolecules. For the normalized 
density distribution of the segments of a single tail, 
fil(x,i,d), and of a single loop, f i2(x, i ,d) ,  both of i seg- 
ments in the direction x normal to the interface in a 
slab of thickness d we have derived previously12 

fil(XJi,d) = 3(’dz)-’R1-’(i:d) x 

2 [ u  Id {exp[-q(ud - d + x - b / 2 ) 2 ]  - 

2 exp[-q(ud - / 1 / 2 ) ~ ]  + 
exp[-q(ud + d - x - b/2)’]} db + 

u = - m  

ld b P [ - d U d  + b/2I21 - 

exp[-g(vd + x - b/2)2]] db (12) 1 
(27) D. Patterson, Macromolecules, 2, 672 (1969). 
(28) P. J. Florv. J. L. Ellenson. and B. E. Eichineer. ibid.. 1. 279 
(19681; B. E.  ‘Eichinger and P. J. Flory, Trans. Faraday So,,., 64, 
2035 (1968). 
(29) The Flory-Huggins interaction parameter x is then to be 
regarded as an empirical parameter t o  be determined from, e.g. ,  
osmotic and lighbscattering experiments and not to be associated 
with a heat of solution of the polymer. The concentration depen- 
dence of x will be neglected. 
(30) Strictly speaking we should not use Flory’s relation between 
a and x because it is derived from the swelling equilibrium of a free 
coil in solution and not of an adsorbed chain. The swelling equilibrium 
of adsorbed chains however, has not been described yet and Flory’s 
relation is expected to be a reasonable approximation. 
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where p = 6/(i12) and R~(i,d) is given by eq 3. 
ther12 

Fur- 

j 3 2 ( X , i , d )  = 12(iP)-lR24(i,d) x 
m 

C { (v + l)(vd + x) exp[-q(ud + x)21 - 
u = - m  

v2d exp(-pv2d2)] (13) 

For particles covered where Rz(i,d) is given by eq 4. 
by equal tails the number density p a  is given by 

Pa = nj31(z,i,d) (14) 

p b  is then found by substitution of (d  - z) instead 
of z. For particles covered by loopsa1 we have 

I n  the case of equal loops eq 15 reduces to 

Pa = nb(x,i,d) (16) 

For a homopolymer and for a copolymer we substitute 
eq 1 and 2 in eq 15. Replacing the summation over i 
by an integration and substituting eq 13 we obtain 

p a  = ns Lm i - l  exp(-iu) x 

{ [(v + ~ ( v d  + x) expI --q(vd + z ) ~ }  - 
l I =  - m  

dv2 exp( -qv2d2)]  (1 - 2pu2d2) X 
v =  - m  

exp(-qv2d2) di  (17) 1 

for the normalization necessary due to the neglect of 
the sum in the denominator. P is easily found from 

f j 3 a d ~  = 1 to be 

P = (1 - exp(-bd)}Z/ 

(1 - 2bd exp(-bd) - exp(-2bd)} (19) 
For d + 0 3 ,  P * 1 and eq 18 gives the exponential 
decrease of p with x as found before (eq 5 in ref 12). 

Now we have expressions for j3 ,  for the case of equal 
tails (eq 14), equal loops (eq 16), and for the loop size 
distribution for an adsorbed copolymer (eq 17) and 
homopolymer (eq 18). Substitution of -the results in 
eq 11 and subsequent numerical integration gives the 
osmotic repulsion between particles covered by these 
specific combinations of polymer chains. Only for a 
homopolymer an analytic function is found after sub- 
stitution of eq 18 in eq 11 and subsequent integration 

M(i ,d )  = 2~(6/Z)l”p[l - 2bdp - p 2 ] 4  X 
[3bd - 7 + p(l  + lObd - 2 b W )  + 

py7 - bd)  - p31 (20) 

where p = exp(-bbd) and b = 2a1/6/il. 
For the case of equal loops and for d/dz2 2 1 a 

good approximation (deviations <2%) for M(i ,d)  is 
given bys2 

(21) 
I n  Figure 2 and with more precision in Table I the 
results are given for the dimensionless osmotic repulsion 
function ~ ( i , d )  as a function of d/di22 for particles 

M ( i , d )  = (3a)”*{ 6d2/( i12)  - I ]  exp(-3d2/i12) 

The Journal of Physical Chemistry, Val. 76, hro. 14, 1071 
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. _homopolymer ---_ --_ 
-eaual tails 

Figure 2. The dimensionless osmotic repulsion function 
M(i,d)  (see eq 11) for several modes of attachment of the 
macromolecules. Only the homopolymer curve depends on 
i;  i t  is calculated for i = 10. The dotted curve gives Meier’s 
results6 for equal tails. 

fore,l1S12 since the curve for tails extends farthest from 
the adsorbing interface whereas the curve for equal 
loops is the most compressed one and the curve for a 
copolymer takes a middle position. This is also di- 
rectly demonstrated by the root mean square extension, 
(x2)1”, of the segments from the interface, for in the case 
of equal loops we have12 ( x 2 ) ,  = iZ2/6, for a copolymer 
( x 2 ) ,  = iZ2/3, and for equal tails” ( x 2 ) C  = 7iZ2/18. Also 
the curve for the homopolymer fits into this picture, for 
the density distribution for an adsorbed homopolymer 
falls off much less sharply than for the other cases (see 
Figure 1 in ref 12), and now we find also that the repul- 
sion works over a larger range. This suggests that 
homopolymers might be very effective as’ stabilizers 
for colloidal dispersions. This conclusion, however, is 
liable to the same serious doubt as its “mother” equa- 
tion l. Another drawback of the use of homopolymers 
is that  Y, i, and CY cannot be controlled independently. 

For the case of equal tails i\!teier5 has also calculated 
M ( i , d )  (or actually M(i,d) /S  is tabulated in his Table 
IV), but he used a density distribution which we showed 
before” to be too compressed to the adsorbing interface. 
Table I1 shows his values for M(i ,d )  to be about 20-30% 
too low. 

Table 11: 
Equal Tails According to Meier,6 M (Meier), and 
to the Present Paper, M(HV0) 

Osmotic Repulsion Function, M(T,d), for 

A4 (Meier) 
d / 2 / $  M (Meier) M (HVO) M (HVO) 

0 . 4  4.995 6.313 0 . 7 9  
0 .6  2.780 3.723 0 .75  
0 . 8  1 ,809  2.397 0.7-3 
1 .0  1.161 1.585 0 .73  
1 . 2  0.738 1.043 0 .71  
1 . 4  0.459 0.667 0.69 

Interaction 
According to the classical picture of colloid stability2*a 

particles in a medium attract each other due to van der 
Waals-London forces. The free energy of attraction 
per unit area between two flat particles is given by 

AFA = -A/12ad2 (22) 
where A is the Hamaker constant. This equation 
neglects effects of electromagnetic retardation, of ad- 
sorbed polymer layers,8a and of the finiteness of the 
particle thickness. In  this paper we are mainly in- 
volved in deriving a correct theory for the repulsion 
between two particles due to adsorbed macromolecules, 
and therefore we will use eq 22 anyhow for the attrac- 
tion between the particles. 

The change in free energy, AF,  per unit area when 
two particles approach each other is now found by 
adding the repulsion terms AFVR and AFM and the 
attraction term AFA or 

AF = AFVB + AFM + AFA (23) 

Substitution of eq 6, 10, and 22 in eq 23 gives 

AF = 2vkTV(i,d) +2(2n/9)a”v2~T X 
(a2 - l ) ( r2 )M( i ,d )  - A/12xd2 (24) 

Thus the main parameters determining the change in 
free energy on the approach of the two particles are: 
a, the average number of segments per loop (tail), i, 
or rather the mean square loop size i12 = ( r 2 ) ~ a 2  in 
which (r2)o is proportional to the molecular weight, M, 
of the loops; b, the number of adsorbed loops (tails) 
per unit area of surface, v ,  here expressed in grams of 
adsorbed polymer, w ,  with w = v M / N a  ( N ,  is Avo- 
gadro’s constant) ; c, the quality of the solvent, x, here 
expressed in the expansion CY whereas CY and x are con- 
nected by eq 9; d, the mode of attachment of t h e  
macromolecules; e, the Hamalter attraction constant. 

We will evaluate eq 24 for a number of cases with 
polystyrene as the adsorbed polymer. We choose M 
between lo3 and lo5. For long-chain polystyrene 
Berry34 has found from light-scattering experiments 
( s ~ ) ~ / M  G 7.5 X 10-l8 em2 where (s~)~~’’ is the radius of 
gyration in a 8 solvent of a free chain with molecular 
weight M .  Withl7na5J6 = 6(s2)0 we then have ad- 
sorbed chains with a root mean square end-to-end dis- 
tance in solution between 21.2 and 212 A. We take 
the amount adsorbed w between 10-lo and 5 X lo-’ 

(33) M. J. Vold, J .  Colloid Sci., 16, 1 (1961); B. W. Ninham and 
V. A. Parsepian, J. Chem. Phys., 52,4575 (1970). 
(34) G. C. Berry, ibid., 44, 4550 (1966). 
(35) Of course, the use of the factor 6 in the relation between (@)a 
and (@)a and the extrapolation of Berry’s result to such low values 
of M is not without question because of the deviationsas of short 
chains from random walk behavior. However, our whole argument 
is based on random walk behavior, and therefore it is not incon- 
sistent to use this approximation. 
(36) H. Sotobayashi and J. Springer, Advan. Polym. Sci., 6 ,  473 
(1969). 
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! 
Figure 3. The free energy of interaction us. the distance between 
particles covered by equal tails (curve f) and equal loops 
(curve a). For particles covered by equal tails b gives the 
volume restriction effect and c the osmotic repulsion; f is the 
result of the adding up of b, c, and the van der Waals 
attraction (e). AFm is the depth of the minimum. The 
curves are calculated for A = 10-13 erg, 

per chain = 5000 A2). 

= 1.2, w = 2 X 
g cm-2, M = os000 (then (~z),'/a = 52 1 and the area 

g cm-2 and the quality of the solvent3' between a = 
0.9 (very poor solvent) and a = 1.6 (good solvent). 
The Hamaker constant is varied between 3 X 
and 3 x erg. In the next section we show some 
of the results mainly for adsorbed tails. The behavior 
of adsorbed loops and copolymers is then found by com- 
parison having in mind Figures 1 and 2. 

Results and Discussion 
Figure 3 illustrates the procedure to find the inter- 

action curve for two particles covered by adsorbed 
macromolecules from the attraction and the two repul- 
sion terms in eq 24. Curve f is found by adding the 
curves b, c, and e; it is the free-energy curve for two 
flat particles covered by equal tails. Curve a is the 
interaction curve found in an analogous way for parti- 
cles covered by equal loops. These curves are typical 
for the stabilization of dispersions by adsorbed macro- 
molecules. At large values of d the van der Waals 

attraction is predominant, but a t  shorter distance a very 
steep repulsion prevents further approach. Unlike the 
case of electrocratic colloids,* we find only one minimum 
even at  very low surface coverage (u = lO-"J g cm-2); 
the van der Waals attraction may then be predominant 
over the whole range of d up to very short distances. 
The osmotic repulsion curve c starts at  higher values of 
d than the curve for the volume restriction. This 
makes sense because osmotic repulsion starts at  the 
incipient overlap of the polymeric clouds, whereas 
volume restriction starts when the cloud is hindered by 
the approaching particle. 

The depth AFm of the minimum in the free-energy 
curve determines the stability of the colloidal state. 88 ,a9  
This minimal free energy per cm2, AFm, multiplied by 
the area of interaction h2 (for flat particles with an edge 
h) ,  is to be compared with the thermal energy of the 
particles. When h2AFm < kT ,  the particles will not 
adhere but they will remain single kinetic units, i e . ,  
a stable dispersion. When h2AFm > kT,  they will have 
a tendency to adhere and thus to form structures in 
solution. When this tendency is small, e.g., kT < 
h2AFm < 5kT, simple stirring of the solution may redis- 
perse the particles. Such systems are called thixo- 
tropic, and already F r e u n d l i ~ h ~ ~  gave an explanation of 
thixotropy on the basis of free-energy curves of the same 
general shape as those shown in Figure 3. This thixo- 
tropic effect is often found (and essential) in pigment 
dispersions stabilized by resinlike material. 40 When 
h2AFm > 5kT, the particles will remain together and the 
system is flocculated. This means that flat, square 
particles with an edge h of 0.1 pm are stabilized when 
AFm < 5kT/hz = 2 X erg cm-2. Thus for the 
case illustrated in Figure 3 particles covered by tails are 
stabilized whereas particles covered by loops under 
otherwise equal conditions are flocculated. For parti- 
cles with h = 0.2 M r n  stabilization is found at  AF,  5 
5 X erg cm-2. Thus in Figure 3 both loops and 
tails give insufficient stabilization for such particles. 
Figure 4 shows that a twofold increase in the linear di- 
mension of the particles requires a fourfold increase in 
the average tail size to ensure stabilization. This in- 
fluence of particle size on the stability of dispersions 
stabilized by polymeric layers was already pointed out 
by K ~ e l m a n s . ~ ~  

For spherical particles with radius b large compared 
to the thickness of the adsorbed layer, the free energy 

(37) With Berry's result the relationship between a and x (eq 9) 
can be approximated for polystyrene to aS(a* - 1) = O . l l ( l / z  - 
x)M1/2  so that for a good solvent ( x  = 0.4) we find a > 1.2 for 
M > 4000 (e.g., a = 1.4 for M = 50,000) whereas for a poor solvent 
(x = 0.49) we find a 5 1.1 for M 5 106 (e.g., a = 1.05 for M = 

(38) H. Freundlich, "Thixotropy," Hermann & Cie., Paris, 1935. 
(39) H. C. Hamaker, Red.  Trau. Chirn. Pays-Bas, 56, 727 (1937). 
(40) F. K. Daniel, VII Fatipec Congress, 1964, p 280. 
(41) H. Koelmans, Dissertation, Utrecht, 1955; H. Koelmans and 
J. Th. G. Overbeek, Discuss. Faraday Soc., 18, 52 (1954). 
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Figure 4. The depth -AFm in the interaction curve as a 
function of the molecular weight of the adsorbed tails for 
w = 2 x 10-8 g cm-*. The stability of the colloidal system is 
determined by the value of h2AFm compared to kT. For 
M = 1000, {rZ)o1/: = 21.2 b and for M = IO6, (+)01/2 = 
212 A. 

of interaction can be calculated using D e r j a g u i n ’ ~ ~ ~  
procedure t o  be porportional with b (see Appendix). 
Thus for spherical particles the influence of particle 
size will be less dramatic than for flat particles, since for 
spheres the stability is inversely proportional with b, 
whereas for flat particles it is inversely proportional with 
h2. Sapper’s experiments43a on the stability of dis- 
persions in heptane containing particles of polyvinyl 
acetate (PVAc) and polymethylmethacrylate (PMMA) 
stabilized by oleophilic chains with some PVAc or 
PASMA anchor segments and of P V A C ~ ~ ~  dispersions 
in aqueous solution stabilized by polyethylene oxide 
(PEO) chains indeed show a decrease in stability with 
increasing particle size, just as Toole, et u Z . , ~ ~  found for 
a phthalocyanine blue pigment dispersion stabilized by 
alkyd resins45 in an oil medium. 

The two upper curves in Figure 4 show the influence 
of the solvent on AF,. In  Figure 5 the dependence of 
the stability on the quality of the solvent ( a )  and on 
the amount of polymer adsorbed (w g cm-2) is shown. 
These curves represent cases where h2AF,  E 5kT. 
To the right of these curves the systems are stable 

cm-2 

stable 

\ 

I I I I I I 

2 1.0 1.2 14 1.6 
a 

Figure 5 .  Dependence of the stability on the quality of the 
solvent and on the amount of polymer adsorbed for some 
values of the Hamaker constant, of the average molecular 
weight per tail, and of particle size. To the right of the 
stability curve the system is stable, to the left it is flocculated. 
(a), A = 10-18erg, M = IO*, h = 0.1 pm; (b), A = 5 X 
10-13, M = 6 X 104, h = 0.1; (c), A = 10-13, M = 104, 
h = 0.2; (d), A = lO-’a, M = 2000, h = 0.1; A = 5 X 
10-18, M = 6 X 104, h = 0.2; (e), A = 5 X 10-ls, M = 
104, h = 0.1; (f), A = 5 X 10-13, M = 104, h = 0.2. 

(h2AFm < 5kT) ,  to the left unstable (h2AFm > 5kT) .  
Figure 5 shows that with decreasing (II the stability de- 
creases. N a ~ p e r ~ ~  found indeed that instability was 
induced by decreasing the solvent power of the disper- 
sion medium for the stabilizing moieties. Incipient 
flocculation occurred in media which were either B sol- 
vent ( a  = 1) or which were only of somewhat better 
solvent power than 0 solvents. Heller and P ~ g h * ~  have 
found that gold sols in aqueous solution stabilized by 
adsorbed PEO are flocculated by addition of KCI at a 
concentration of about 0.5 mol/l. S e ~ e r a l ~ ~ , ~ ~  authors 

.(42) B. Derjaguin, Kolloid Z . ,  69, 155 (1934). 

(43) (a) D. H.  Napper, Trans. Faraday Soc., 64, 1701 (1968); 
D. H. Napper, J .  Colloid Interface Sci., 32, 106 (1970). 

(b) 

(44) J .  Toole, J. 5. F. Gill, and R. G. Tainturier, VI1 Fatipeo Con- 
gress, 1964, p 289. 
(45) W. Black, F. Th.  Hesselink, and A. Topham, Kolloid-2. Z .  
Polym., 213, 150 (1966). 
(46) W. Heller and T. L. Pugh, J .  Polym. Sci., 47, 203 (1960). 
(47) Yu. M. Glazman, Discuss. Faraday Soc., 42, 255 (1966). 
(48) K. G. Mathai and R. H. Ottewill, Trans. Faraday Soc., 62, 750 
(1966). 
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have described the same phenomenon for other hydro- 
phobic sols (AgI, As2&, latex) stabilized by a nonionic 
surfactant with a long PEO chain. This is completely 
in line with Napper’s result because water becomes a 
poor solvent for PEO when the salt concentration 
comes in this range (salting-out effects). This same 
phenomenon is also demonstrated by van der Waar- 

finding that the equilibrium thickness of an aque- 
ous film stabilized by a nonionic (PEO) surfactant de- 
creases with increasing NaCl or urea concentration, 
especially at  concentrations above 1 mol/l. Here the 
decrease of a is directly seen in a decrease of the film 
thickness. 

drawn curves for A= lO-I3erg 

dotted curves for A=5~10-’~erg 

,I stable 
M 

’O=t 

w-2x10 
\h=0.1 

I I I I 1.1 I 

0.9 1.0 1.2 1.4 1.6 
I 

Figure 6. 
solvent (a) and on the average molecular weight 
per adsorbed tail. 

Dependence of the stability on the quality of the  

Kapper found that the flocculation brought about by 
decreasing the solvent power of the medium was a 
reversible process. The system redisperses when the 
quality of the solvent is restored. The reversibility of 
flocculation is a general consequence of interaction 
curves, as shown in Figure 3, which have only one 
minimum. 

Figures 5 and 6 show that also in a good sol- 
vent instability can occur when the other stability- 
determining parameters (w, M ,  A ,  h) are chosen too 
unfavorably. Curve b in Figure 5 shows an interesting 
extremum. For an intermediate value of the amount 

adsorbed the solvency required for stabilization has a 
minimum at a < 1. The osmotic effect causes an 
attraction at a < 1 (AFM < 0, see eq lo), but at  these 
intermediate values of w the repulsion due to volume 
restriction prevails over both van der Waals attraction 
and osmotic attraction. This is also the reason that in 
Figure 6 stability is found at Q = 0.9 at  high enough 
average tail size. At higher w the stability line b in 
Figure 5 curves back to  a = 1, for with increasing w the 
osmotic attraction at  Q = 0.9 increases faster than the 
repulsion due to volume restriction because, as Meier5 
pointed out, AFM is proportional with w 2  whereas 
AFVR is proportional with w .  

Figure 6 shows stability lines as a function of average 
tail size M and solvency of the medium a. The strong 
influence of M on the stability is understood from the 
notion that highly extended layers cause repulsion 
when the particles are far away from each other and the 
van der Waals attraction is still small. Heller and 
Pugh find indeed that PEO of M = 9000 is more ef- 
fective than PEO of M = 6000 as a stabilizer for gold 
sols in aqueous solution. N a ~ p e r , ~ ~ ~  however, found 
that the stability of PVAc dispersions stabilized by 
PEO was relatively insensitive to the molecular weight 
of the stabilizing moieties. This difference might in 
part be due to their different method of measuring the 
stability (Heller and Pugh increase the salt concentra- 
tion up to flocculation and Napper the temperature), 
but also, e.g., to changes in the average tail size due to 
extra adsorption. For Molau’s50 polymeric “oil in oil” 
emulsions-polybutadiene (PB)-polystyrene (PS) in 
benzene as common solvent stabilized by a two-block 
PB-PS copolymer with blocks of approximately equal 
size-the stability is foundsob to increase, as we expect- 
ed, very much with increasing size of the blocks. 

In  conclusion, we have a theory which gives a satis- 
factory description of protective action and which is in 
qualitative agreement with several known aspects of 
protection. Notable shortcomings of the theory are the 
a priori assumption of the macromolecules being ad- 
sorbed on only one particle and the unclear relation be- 
tween x and a. Protection by adsorbed homopolymers 
is not a completely solved problem because of the unre- 
liability of eq 1. Experiments t o  test the stability of 
protected sols on systematic variations of the various 
stability-determining parameters (w,  M ,  a, A ,  h) are 
desirable. Adsorption studies on variations of w ,  M ,  
and a (or x) could give useful additional information. 
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E .  14. J. Bertin of the Electronisch Reliencentrum, 
Utrecht, for his advice in the numerical evaluation of 
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(49) K. M. van der Waarde, private communication, 1968. 
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G. E. Molau, Kolloid-2. 2. Polym., 238, 493 (1970). 
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Appendix 
Derj a g ~ i n ~ ~  considered the repulsive energy between 

two spheres in a first approximation to be formed by the 
contributions of infinitesimal small rings parallel to 
each other at a distance d. The repulsive free energy 
between t x o  parallel rings covered by adsorbed macro- 
molecules is approximately given by A F V R  + AFM.  
The free energy of repulsion between two spheres of 
radius b a t  a minimal distance do (the distance between 
the centers of the spheres being 2b + do) is then found 
by integrati0n.5~ The value of the integral does not 

VR = 2 ~ b  L: ( A F V R  + A F M )  dd 

depend on b, so that TiR is proportional with b. The 
van der Waals attraction energy between two spheres 
is also proportional with b, so that the total free energy 
of interaction is proportional with b. The stability of 
the colloidal system is determined by the minimum in 
the free-energy curve, and of course also this minimal 
value of the interaction energy is proportional with b. 

(51) Reference 3b, Chapter IX, eq 54. 
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The process of adsorption of fibrinogen onto mica and evaporated carbon has been characterized as completely 
diffusion controlled by the direct counting of individual molecules through the use of the electron microscope. 
As applied to adsorption on mica the method produced Hall and Slayter triad molecules, and the deposits 
were reproducibly and uniformly distributed over the specimens. Under the experimental conditions, the 
adsorption was strongly dependent on the compositsion of the substrate, and in the case of mica, it was insensi- 
tive to  the composition of the suspending buffer. 

Introduction 
The adsorption of proteins and macromolecules from 

aqueous suspensions has been investigated by 
means of several experimental techniques, including 
streaming potentials,*& isotope and fluorescence label- 
ing,zb depletion of s~spens ion ,~  ellip~ometry,~ and visual 
observation in the electron micro~cope.~ Fibrinogen 
adsorption is of special importance because of its unique 
configuration in the adsorbed stage, its strong tendency 
to  adsorb, and its possible involvement in the initial 
stages in the interaction of human blood in vivo with 
devices such as artificial heart valves and a r t e r i e ~ . * ~ ~ ~ ~ ’  

The objective of this investigation was to characterize 
the adsorption of fibrinogen onto muscovite mica and 
evaporated carbon a t  short adsorption times from a 
dilute, unstirred suspension of the protein molecules, 
and to  investigate the effect of the properties of the sus- 
pending buffer on the adsorption. An additional 
objective was to  establish a methodology which could 
be applied to  other proteins and solids. The method 
was the visualization of the adsorbed protein molecules 
in the electron microscope and the obtaining of kinetic 

data by direct counting of the individual adsorbed 
molecules. 

Materials and Equipment 
The bovine fibrinogen was the diagnostic product of 

the General Diagnostics Division of Warner-Chilcott, 
packaged in vials as 6 mg of clottable protein, 17 mg of 
sodium chloride. 

The human fibrinogen was prepared in this labora- 
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