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Summary

For ternary systems containing two isotopic fornis of the same cheniical species,
Solutions of the diffusion equations, for free diffusion boundary conditions, are
discussed. These solutions are derived on the basis of two different assumptions
concerning the concentration dependence of diffusion coefficients. The diffusion of
labeled molecules in a gradiënt of the total solute concentration is described with
the aid of the nautual and self-diffusion coëfficiënt. The measurement of this diffusion
can be used to determine these coefficients. The results apply to solutions of non-
electrolytes as well as to electrolyte solutions.

1. INTRODUCTION

The application of isotopically labeled molecules has become of con-
siderable importance in the study of diffusion. In this connection the
terms "self-diffusion" and "tracer-diffusion" are often used in the
literature, whereas recently ALBRIGHT and MILLS [1] introduced another
term:' 'intradiffusion''. In order to avoid ambiguity and to relate the present
work to previous publications in the field, a few remarks on nomenclature
will first be made.

In a diffusion experiment in which no use is made of labeled molecules,
there are always finite concentration gradients and gradients of the activity
coefficients of the components in the system. Such an experiment, when
performed in a binary system, gives one coëfficiënt which is called the
"mutual diffusion coëfficiënt" or the "interdiffusion coëfficiënt".

The term "tracer-diffusion" is often used in connection with the applica-
tion of a tracé arnount of a labeled component, whereas in "intradiffusion"
this amount is not necessarily small. For detailed definitions, the reader
is referred to the work of ALBRIGHT and MILLS [1] who confine the use
of the term "self-diffusion" to the special case in which two isotopic forms
are the only components present in the system (e.g. benzene and 14C-
labeled benzene). Other authors [2, 3], however, also use "self-diffusion"
when there are more than two components.

Tracer-diffusion and intradiffusion experiments have one important
common feature, in contradistmction to experiments in which no labeled
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components are applied; this is that the molecules, the diffusion of which
is measured, move in an essentially homogeneous environment, the
activity coëfficiënt of all components being practically constant. Therefore,
a tracer- and an intradiffusion experiment, if performed at the same
composition of the mixture, are expected to give the same diffusion
coëfficiënt. Since the difference between these two experiments is of
experimental rather than of fundamental nature, it is doubtful whether
the distinction between tracer- and intradiffusion coefficients adds much
to clarity in nomenclature. In the present work, the term "self-diffusion
coëfficiënt" is used also for multicomponent systems. It should be kept
in mind that this coëfficiënt is a function of the composition of the mixture.

The purpose of the present work is to consider the diffusion of labeled
molecules or ions in systems not subject to the condition of a homogeneous
environment for these molecules or ions. In order to do this, we have
chosen the simplest possible ternary system, consisting of two isotopic
forms of one chemical species and a third component, the solvent. An
example would be the diffusion of 14C-labeled sucrose in a gradiënt of total
sucrose in water. It will be shown that this diffusion can be described by a
combination of nrntual- and self-diffusion. As a consequence of this, it is
possible to measure both the mutual- and the self-diffusion coëfficiënt of a
solute in situations in which there is a gradiënt of the total solute con-
centration. This may be of some practical value because in the usual type
of measurement, the mixtures on both sides of the diffusion boundary
have equal or only very slightly different densities, which may cause
errors in the measurernents due to convection.

In this paper, solutions of the diffusion equations are discussed. The
results apply to solutions of non-electrolytes as well as to electrolyte
solutions. In a subsequent paper some experimental results will be
presented.

2. THBOEY

2.1. Diffusion equations for a ternary system

When there is diffusion in one direction only (the x-axis) in a ternary
system of uniform temperature and pressure, the diffusion process can be
described quite generally by an extension of Fick's law

(1) j^-ZDu** (i=l,2).

Here l and 2 denote two of the three components which could be called
the solutes. In general, the four diffusion coefficients DU, are functions of
both Ci and cz, the concentration in moles{volume. The flows Jj are taken
with respect to the volume-fixed reference system [4]. Equation (1)
applies to solutions of non-electrolytes and to electrolyte solutions. In the
latter case, the components are neutral salts.
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It will be assumed that the partial molar volumes of all components
vary so little with concentration, or that the concentration differences
across the diffusion boundary are so small, that volume changes caused
by mixing can be neglected. Then, the volume-fixed frame of reference
does not move with respect to the diffusion cell, the flows become equal
to the experimental flows, and the coefficients D^ are those determined
directly by experiment. (The same will be true for the other diffusion
coefficients to be discussed). Furthermore, under this condition, eqn. (1)
can be combined with the continuity equation, to give the partial differen-
tial equations [5, 6]

Solutions of these equations subject to the "free diffusion" boundary
conditions will be discussed. In free diffusion, a sharp boundary is formed
(at x = 0 and time t = 0) between two solutions of different concentration
say, in a cylinder long eiiough to prevent the development of concentration
gradients at the ends of the cylinder. Then, the initial and boundary
conditions are

ei = GI" for x > O )
/Q\ \ 4- A t\ l O\(o) , _ > t = 0 (1= l, Z)

GI = d for x < O )

and

Ci = Cj" for x= +00 )
(4) Cl = Ci' for z=-co *>0 ( i = 1> 2) '

where d' and d" are the initial concentrations on each side of the boundary.

2.2. Ternary diffusion of solvent + two isotopic forms of the same substance

The general equations given thus far, will now be applied to the special
ternary system to be discussed here. Then, the subscripts l and 2 denote
the labeled and the unlabeled form of the same chemical species, respec-
tively. In the case that the solutes are electrolytes, the subscript l denotes
the neutral salt containing a labeled ion.

It will be assumed that isotope effects can be neglected as far as diffusion
is concerned. Using only this assumption, ALBBIGHT and MILLS [1]
derived certain relations between the coefficients D^ which are valid for
the special ternary system under consideration, and by which eqns. (2)
can be simplified.

In order to do this, first a mutual- and a self-diffusion coëfficiënt
have to be defmed for our system. The mutual diffusion coëfficiënt, D,
is defined by

tK\ T nÖCs
(5) Jg=-D3-,
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where

(6) JS=J1+J2

and

(7) cs = ci + c2.

The following equation defines the self-diffusion coëfficiënt, D*.

(8) «/i= — D* -?— cs = constant.
öa;

The relations, referred to, derived by ALBRIGHT and MILLS for non-
electrolyte solutions, are

(9)

and

(10) D
C] ca

which imply

(H)

(12)

and

(13) Du =
s

where êij is the Kronecker d.
It has been recently remarked by MILLER [7] that these relations apply

equally to electrolyte solutions (see also ref. 8, appendix I). Then, D
and -D* are the mutual diffusion coëfficiënt of the neutral salt and the
self-diffusion coëfficiënt of the labeled ion, respectively.

2.3. Solutions of the diffusion equations for constant diffusion coefficients

a. Dij independent of concentration

The differential equations (2) can be solved analytically only by means
of symplifying assumptions concerning the concentration dependence of
the coefficients Dij. A solution for general ternary systems of these
equations, subject to the boundary conditions (3) and (4), was presented
by FTJJITA and GOSTIÏTG [9], who used the assumption that the coefficients
DIJ are independent of the concentrations. Their solution can be simplified
for our special ternary system by the substitution of eqns. (13). However
in this special case, the assumption concerning the coefficients DU is
inconsistent with the general boundary conditions (3) and (4). Obviously,
by eqn. (11), the assumption implies that cijcz should be constant. This
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demands a very special choice of the initial concentrations which is not
taken in general. Nevertheless, the solution has been applied successfully
by GOSTING, DUNLOP and others [10-16] in the calculation of the four
coefficients DIJ from the results of diffusioii measurenients. These co-
efficients were found to be consistent [8, 13-18] with the ONSAGER
reciprocal relation in the thermodynamics of irreversible processes [19].
For this reason, the solution given by Fujita and Gosting, although it can
not be exact for the general initial condition (eqn. (3)), might be a useful
approximation for the special system that is considered here, and its
utility might be tested by experiment.

We only give the final result of the substitution of eqns. (13) into the
original solution given by Fujita and Gosting. It reads

ACSJ , / x

(14) *-S*+ 4?-*' X ^ S 2 ^\ Vl ' iT» •'-'J--•- l / l / a

) 2 \2VD*tJ S ^ , Acs
\ ^ ' ' Ca ++ =£ erf

2 \V/Wt
in which

/ l c r \ - Ci +Ci
(15) c' = ̂ 2—

and

1]R\ Aa. ,.." /..' /,' 1 O 0\^10; ziCj —ei —Ci ( . i—J-, *, s).

The meaning of erf (z) (or error function of z) is given by

(17) erf (z)= ?= ƒ e-"2 da
V n o

in which a is an integration variable.
In the derivation of eqn. (14), we used the following expression for cs.

This is the well known solution of the diffusion equation for binary systems
with constant D [20]. The use of eqn. (18) is permitted, since it follows
from eqns. (9) and (12) that D* and D are constant if the coefficients D^
are constant.

The expression for ei (eqn. (14)) is seen to be the product of the solution
of the diffusion equation for constant D*, and a factor which approaches
unity for large values of cs, small values of Acs or when the difference
between D and D* is small.

b. D and D* independent of concentration

Another possible solution of eqns. (2) can be derived for our special
syistem when it is assumed that the coefficients D and D* are constant.
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This assumption allows the choice of much more general initial conditions
rather than restricting them to the trivial case, where the isotopic ratio
GI/CZ has the same value all over the cell. When isotope effects in diiïusion
may be neglected, D and D* only depend on cs. From experimental values
of D and D* one can see that the assumption is reasonable as long as cs

does not vary too much in the experiment and thus for small values of the
concentration difference, Acs, across the boundary.

In order to find a solution of the diffusion equations for constant D
and D*, first eqns. (13) are substituted into eqns. (1). The result is

(19) JI=-D*^-*(D-D*)%* ( i=i,2).
ox cs ox

These equations were already derived in a different way by VAN GEET
and ADAMSON [21]. Equations (19) are combined with the continuity
equation to give partial diflferential equations which for constant D and D*
can be written as

(20) =Z)*
' ét cte2 dx \cs dxj '

The solution of this set of coupled differential equations seems difficult at
first sight. However, it should be remembered that cs in eqns. (20) is a
known function of x and t, given by eqn. (18), which is the solution of
the equation.

<»>
The partial differential eqns. (20) can be reduced to ordinary differential

equations by introducing a new variable

(22) r,=
2VDt'

The substitution of the variable is permitted [22] when ei and c2 are
functions of x/t* only. This was recently shown to be true, by MIJNLIEEF
and VEEDENBEEG [6], for the boundary conditions (3) and (4), in systems
with a similar concentration dependence of the coefficients DIJ as in our
case. We therefore substitute eqn. (22) into (20) and (21) and find

2«
 dCl - D ^i + (J-J*> A (« ACs

- ty— - — ̂ 3 + D ^ ̂  —
and

respectively. Now, another variable

(25) n = i' (i =1,2)
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is substituted into eqns. (23), to give

ri dcs D* d2fl d2Cs (£> + D*dcs dn

Next, eqn. (24) is multiplied by n and subtracted from eqns. (26). After
division by cs D*jD, the result is

By integrating these equations, we obtain

-[UW* 1 + 1]
(28) -_ - - - — jjj ^, i _

thj \Cg.

where EI is an integration constant. The final solutions of eqns. (20) is
found by integrating eqns. (28) between the boundaries O and rj. The
result is

n /~\ -[<w*>+u
(29) r1(j?)-n(0)=B1 ƒ

o \cs

where ft is an integration variable and Cs(/3) is given by eqn. (18) with
|x/(Di)* replaced by ft. The constants Ej and ri(0) are determined by the
boundary conditions which are expressed in terms of n and r\ by

(30) fl = n '=£L for ij=-oo (i = 1,2)
cs

and

(31) n = r1 '=^for,= +c» (i=l,2).
cs

With the aid of these conditions and writing I (ij) for the integral in eqns.
(29), we obtain the following expressions for EI and ri(0).

and

<»> •>""-fi'?(:"i:s-~r'-
It should be noted that ri(0) is not necessarily equal to ci/cs in this case.

The integral 1(rf) can only be evaluated numerically. Values of D, D*
and Acsjcs have to be chosen first. It is convenient to use tables of the error
function and its derivative [23] for the evaluation, since these are just
the functions occurring in the integrand of eqns. (29).
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2.4. Equations for a measurable quantity

A coraplete test and comparison of the two solutions presented (cf.
eqns. (14) and (29)) would demand the measurement of the total con-
centration distribution of Ci in a nuffiber of diffusion experiments. It is,
however, easier to measure the amount of the labeled component that
has been transported across the plane x = 0 in time t. For comparison we
first calculate the total amount of solute transported across this plane in
an ordinary mutual diffusion experiment. This is done by integrating the
flow of solute, described by Fick's law (cf. eqn. (5)), at the plane x=Q,
between time O and t. Using eqn. (18) we obtain (cf. ref. 20, p. 22)

We now define an experimental quantity Qs by

(35)

The mutual diffusion coëfficiënt, D, can be calculated from this expression
when Qs is determined by experiment.

Next, we consider a free diffusion experiment with the special ternary
system under study, in which the amount of the labeled component
transported across the plane x = O is measured. As in the previous case,
expressions for this quantity are easily derived from the solutions of the
differential equations for the system (eqns. (14) and (29)). First eqns. (14)
(for i= l ) and (18) are differentiated with respect to x and the resulting
expressions for (öci/èic^-o and (öcs/öa;)a:=o are substitutecl into the flow
eqn. (19) (for i = l) to give

In the derivation of this equation we used the equalities (CI)X=Q = CI and
(cs)x=o = cs which follow from eqns. (14) and (18). Next, we define two
quantities, Qi and i>m by an equation similar to eqn. (35), but with
the subscript s replaced by l, and D replaced by Z)m. From a comparison
of eqns. (34) and (36), it is conchided that Dm which might be considered
as an apparent diffusion coëfficiënt, is given by

(37) Dm=

A similar derivation is now given, starting from the other solution, eqn. (29)
or its derivative with respect to r), eqn. (28). First eqn. (19) (for i = l)
is transformed, using ri = ci/cs, into

<>» Jt — V+
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Expressions for the partial differential quotients in this equation are
easily derived from eqns. (18) and (28). After substitution of these ex-
pressions, the final result can be written as

+n(0) ̂ J )
ï - j •

From a comparison of eqns. (34) and (39), we conclude that

n ^Dm=

The expressions (37) and (40) which are the result of two different assump-
tions concerning the concentration dependence of diffusion coefficients,
can be compared and tested by experiment.

3. DISCUSSION

A first test and comparison of the equations obtained, can be performed
by the substitution of two special initial conditions. The first of these is
expressed by

(41) Acs = 0

which is the condition for a self-diffusion experiment. It is easily shown
that the substitution. of this condition into eqns. (14) and (29) gives the
same result, namely

which is the solution of the binary diffusion equation for constant D*.
Furthermore, when condition (41) is applied to eqns. (37) and (40), both
give Dm = D* as was to be expected. It is not surprising that eqn. (14)
gives the correct result in this case : the derivation of differential equations
as given by Fujita and Gosting finally resulting in eqns. (14), can be
shown to be exact if D and D* are constant and condition (41) is satisfied.

The second initial condition we substitute into eqns. (14) and (29) is

Again, the result is the same for both equations: we obtain eqn. (18)
with the subscript s replaced by i, whereas both eqns. (37) and (40) give
Dm = D. This result was to be expected, since eqn. (29) combined with
condition (43) immediately gives Ci'/cs' = Cj"/cs" = Ci/cs = constant. This is
the only case for which the four coefficients, D^, are constant, and there-
fore eqn. (14) gives the correct result.

In a subsequent paper, it will be explained how the quantities Qi and
Dm are determined by experiment. Experiments, when performed in
systems with known values of D, D'*, cs', cs", GI' and c\ , provide a test
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of eqns. (37) and (40) (and therefore of eqns. (14) and (29)). On the other
hand, it is possible to calculate both D and D* by using values of Dm

which are obtained froni experiments in which there is a gradiënt in the
total solute concentration. It is interesting to investigate what will be the
difference in the results if eqn. (37) or eqn. (40) is used for such calculations.

For example, two experiments (to be denoted by the indices I and II)
could be carried out, with the same values of Cg' and cs", but different values
of GI' and GI". Let the results of these experiments be D-an and Dmu,
respectively, then, D and D* cari be solved from the two eqns. (37) for
the two experiments. Writing qs for Zlcs/cs and qi for Acijöi, we obtain

(44)

and

(45)

Similarly, D and D* can be solved from the eqns. (40) for the two ex-
periments and use can be made of eqns. (32) and (33) for the constants EI
and fi(0) in eqn. (40). Then for j/Z>* a complicated expression is obtained,
which still contains the integrals I ( + 00) and I ( — 00). However, in the
expression for \/D, these integrals drop out and the final result is just
eqn. (45). In other words, eqns (37) and (40), when used to calculate
D* and D from experimental values of Dm, only give different results
for D* but not for D.

For the purpose of illustration, we have calculated the dimensionless
quantity Dm/Z>* for a number of chosen values of qs, D\D* and q\. The
integrals, necessary for these calculations with eqn. (40), were evaluated
numerically, using Simpson's rule. The results for q\— ± 2 are presented
in tables 1-3. We chose these values of q\ because it is convenient in
practice to perform experiments in which either cj.' or c\ is zero.

Using the values of Dm/D* obtained from eqn. (40) for qi=+2 and
gi= — 2, we calculated the quantity D* (eqn. 44)/Z>*. The results are given
in the last column of the tables. If eqn. (40) is considered as the correct
equation, these results give an impression of the inaccuracy in the values

TABLE l
qs = = — 0.2

D j D*

0.50
0.75
1.125
1.25
1.50

Dm/D* (qi = — 2)

eqn. 37
0.9423
0.9737
1.0122
1.0238
1.0455

eqn. 40
0.9435
0.9739
1.0120
1.0234
1.0434

Dm[D* (qi = + 2)

eqn. 37
1.0594
1.0270
0.9879
0.9765
0.9556

eqn. 40

D* (eqn.44)/Z>*

1.0610 ! 1.0014
1.0276
0.9877
0.9761
0.9532

1.0006
0.9998
0.9996
0.9978
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TABLE 2
= — 0.6667

D/D* Dn[D* (?i = — 2)

eqn. 37
0.50 ! 0.8143
0.75
0.875
1.125
1.25
1.50

0.9127
0.9574
1.0409
1.0802
1.1554

eqn. 40
0.8238
0.9171
0.9592
1.0385
1.0768
1.1495

Dm/D* (3i = + 2)
eqn. 37 ' eqn. 40
1.2048
1.0913
1.0435
0.9600
0.9229
0.8558

1.2280
1.1009
1.0476

D* (eqn. 44)/D*

1.0158
1.0069
1.0029

0.9564 0.9970
0.9164
0.8455

0.9950
0.9917

TABLE 3
gs = zlcs/cs = — 1.2

D/D*

0.50
0.75
1.125
1.25
1.50

Dm/D* (<?i = — 2)

eqn. 37
0.6794
0.8457
1.0741
1.1467
1.2879

eqn. 40
0.6992
0.8552
1.0751
1.1386
1.2736

Dm/D* (?1 = + 2)

eqn. 37 eqn. 40
1.3824 1.4967
1.1672 1.2124
0.9285 | 0.9136
0.8634 0.8357
0.7485 0.7055

D* (eqn. 44)/Z>*

1.0605
1.0260
0.9903
0.9813
0.9687

of D* calculated with the inexact eqn. (37). The quantity D* (eqn. 44)/Z>*
was also calculated using values of qi different from ± 2. The results were
practically the same as those presented in the last column of the tables.

For many systems it is observed experimentally that 0.75 <DJD* < 1.25,
whereas, except at very low values of cs it will be easy to perform ex-
periments in which \qs\<2[3. It was already observed that the eqns. (37)
and (40) give the same result when used in the calculation of D. So, in
many practical cases eqn. (37) will give sufficient accuracy in the calcula-
tion of both D and D*. Although the derivation of eqn. (40) is botter
justified from a theoretical point of view, its application in the calculation
of D* from experimental values of Dm involves much more numerical
work than the use of eqn. (37).

In conclusion, from the assumption that the four coefficients D^, used
in the description of ternary diffusion, are constant, a solutïon of the
diffusion equations for our system is obtained which is not exact for the
free diffusion boundary conditions. This solution, however, can be applied
in many cases to calculate both D and D*, with acceptable accuracy,
from the result of diffusion experiments. We hope to have illustrated the
limitations of its applicability, by a comparison with the results of another
solution which was derived on the assumption that D and D* are constant.

Acknowledgement

This work is part of the research programme of the "Stichting voor
Fundamenteel Onderzoek der Materie" (Foundation for Fundamental



28

Research on Matter — F.O.M.) and was made possible by financial
support from the "Nederlandse Organisatie voor Zuiver-Wetenschappelijk
Onderzoek" (Netherlands Organisation for The Advancement of Pure
Research - Z.W.O.).

Van 't Ho ff Laboratory, University of Utrecht,
Utrecht, The Netherlands

REFERENCES

1. ALBBIGHT, J. G. and R. MILLS, J. Phys. Chem., 69, 3120 (1965).
2. BEABMAN-, R. J., J. Phys. Chem., 65, 1961 (1961).
3. LAJTY, R. W., J. Phys. Chem., 63, 80 (1959).
4. KIEKWOOD, J. G. et al., J. Chem. Phys., 33, 1505 (1960).
5. DUDA, J. L. and J. S. VBENTAS, Ind. Eng. Chem. Fund., 4, 301 (1965).
6. MIJNLIEFF, P. F. and H. A. VREDENBEBG, J. Phya. Chem., 70, 2158 (1966).
7. MILLER, D. G., J. Phys. Chem., 71, 616 (1967).
8. , J. Phys. Chem., 63, 570 (1959).
9. FTJJITA, H. and L. J. GOSTIÏTO, J. Am. Chem. Soc., 78, 1099 (1956).

10. O'DoNNEL, I. J. and L. J. GOSTEKO, in "The structure of Electrolytic solutions"
Ch. 11, W. J. Hamer, Ed., John Wiley and Sons, Inc. New York, N.Y.
1959.

11. DUNLOP, P. J., J. Phys. Chem., 61, 994 (1957).
12. , J. Phys. Chem., 61, 1619 (1957).
13. • , J. Phys. Chem., 63, 612 (1959).
14. FTJJITA, H. and L. J. GOSTING, J. Phys. Chem., 64, 1256 (1960).
15. WOOLF, L. A., D. G. MILLER and L. J. GOSTING, J. Am. Chem. Soc., 84, 317

(1962).
16. DUNLOP, P. J., J. Phys. Chem., 69, 4276 (1965).
17. MILLEB, D. G., Chem. Rev., 60, 15 (1960).
18. , J. Phys. Chem., 69, 3374 (1965).
19. ONSAGER, L., Ann. N.Y. Acad. Sci., 46, 241 (1945).
20. JOST, W., "Diffusion in solids, liquids, gases", Academie Press Inc., New York,

N.Y., p. 20 (1952).
21. GEET, A. L. VAK and A. W. ADAMSOK, J. Chem. Phys., 44, 1725 (1966).
22. BOI/TZMANÏT, L., Wied. Ann., 53, 959 (1894).
23. "Tables of the error function and its derivative", Natl. Bureau of Standards

Applied Mathematics Series 41, Washington D.C., 1954.



PHYSICAL CHEMISTRY

DIFFUSION IN TERNAEY SYSTEMS CONSISTING OF
TWO ISOTOPIC FORMS OF A SUBSTANCE IN SOLUTION

PART II. - EXPERIMENTS WITH THE SYSTEM Na36Cl - NaCl - H2O at 25° O.

BY

Y. WIERSEMA AND J. TH. G. OVERBEEK

(Communicated at the meeting of November 30, 1968)

Summary

A glass diffusion eell of the shearing type is desoribed. Some experiments with
the system labeled urea-urea—water and labeled sucrose-sucrose-water show that
the accuracy of results obtained with this cell is better than i l %. Measurements
of the diffusion of the 36Cl-ion in a gradiënt of the total NaCl concentration with
the system Na36Cl-NaCl-H2O, confirm the theory given in part I of this publieation.

1. INTRODTJCTION

In part I of this series [1], diffusion in a special type of ternary systems
was studied. The two solutes in these systems are two isotopic forms of
the same substance which were assumed to behave identically in diffusion.
It is well known that labeled compounds are used in experiments to deter-
mine self-diffusion coefficients. (For reasons given in part I the use of
"self-diffusion" instead of "tracer-diffusion" or "intradiffusion" is pre-
ferred). In such experiments the total solute concentration is kept constant
or nearly constant. In part I, however, situations were also studied in
which the labeled component diffuses in a gradiënt of the total solute
concentration. Solutions for the diffusion equations were discussed and it
was concluded that the diffusion of the labeled component can be described
with the aid of two diffusion coefficients: the rnutual diffusion coëfficiënt
and the self-diffusion coëfficiënt. It was shown to be possible, in principle,
to determine these coefficients from measurements of the diffusion of a
labeled component in a gradiënt of the total solute concentration. These
conclusions apply to solutions of non-electrolytes and to electrolyte
solutions.

It is the purpose of this part, to show that experiments with the system
Na36Cl-NaCl-H20 are in agreement with the theory. A diffusion cell,
used in these experiments, will be described.

2. THEORY
2.1. Equations for a measurable quantity

In this section, equations will be given, which are used in order to
calculate diffusion coefficients from measured quantities. Suppose, a
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diffusion experiment is performed in a cylinder of cross section A, and
length 21.

The axis of the cylinder is called the z-axis; the middle is at x = O and
the ends are at x — ± l. A sharp boundary is formed, at x = O and time
t = O, between two solutions of different concentrations. When the cylinder
is sufficiently long to prevent the development of concentration changes
at the ends, the boundary conditions are those of so-called free diffusion.
Then, in the case of a binary system, the total amount of solute which
has been transported across the plane a? = 0 in the time t can be easily
calculated [2].

Here, we are interested in the amount of the labeled component which is
transported across the plane x — 0 during time t in an experiment with
the special ternary system under consideration. For this system we adopt
the following notation. The subscripts l, 2 and s will be used for the
labeled component, its unlabeled chemical equivalent and their sum,
respectively.

Furthermore, a' and ci"(i=l, 2, s) denote the initial concentrations in
the cylinder for x<0 and x>Q, respectively, whereas we write Aci for
Ci"-ci' and öi for (ci" + Cj')/2.

In part I, we defined the quantities Qi and Dm by the equation

m o l ( <TÏ M(l) < 2 l =_j ( j 1 )^df=

in which Ji is the flow per unit cross section of the labeled component
and _Dm can be considered as an apparent diffusion coëfficiënt. It will be
clear that A times the integral in this equation equals the amount of the
labeled component which is transported across the plane x = O during time t.
If the amount of this component present at time t in the parts of the
cylinder extending from x = Q to x= — l and from x = 0 to x= +1 are
denoted by M (t) and N (t), respectively, the following equation can be
written

Qi N(t)-N(Q) M(0)-M(t) N(t)-N(0) N(t)-N(0)
v ' 21 2AUi 2Alci M(Q) + N(Q) M(t)+N(t)'

Combining eqns. (1) and (2), we obtain

M(0)-M(t) = N(t)-N(Q) = _Aci (D^
( ' M(t)+N(t) ~ M (t) + N (t) ~ 25il\ n

The left-hand side of this equation is measurable, since the amounts of
the labeled component are proportional to the amounts of radioactivity.
The factor Aci/25i can, if necessary, be obtained from

N(0)-M(Q)
( '

In actual practice, however, it is convenient to put either GI' or GI" equal
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to zero. Then, /lci/2ci becomes equal to + 1 or — l , respectively, and
eqn. (3) is written as

M(t) l fDmt\* . , n

= - f o r o i =°
or

N(t) , „ .= i(-ir) f o r c i = 0 -
In part I, two equations for the quantity Dm are given. The first is:

(7) Dm =Su** + (Dl_2)*t)JL ^1[,
( ZICl Cg )

in which D and D* are the mutual — and the self-diffusion coëfficiënt of
the solute. If D and D* are assumed to be constant, eqn. (7) is only exact
for two special choices of the initial conditions, i.e. when Ci'lcz' = c\"jcz"
or when zlcs = 0.

It is easily verified that then, eqn. (7) reduces to Dm = D or to Dm=D*,
respectively. Por all other choices of the initial conditions eqn. (7) should
be considered as an approximation. Therefore, another equation for Z)m

was derived, using the assumption that D and D* are constant, and which
is exact for all initial conditions. It reads

Expressions for the constants EI and ri(0) (fi(0) equals (ci/CgJ^-o) are
given in ref. 1.

The equations (7) and (8) can be used to calculate D and D* from
sxperimental values of _Dm. It was concluded in part I that they give the
same result for D but not for D*, although eqn. (7) may give acceptable
results for D* in many cases.

2.2. The duration of the experiments.

The duration of a diffusion experiment with a cylinder as described
above, is an important factor. If t in eqn. (5) and (6) is taken too small,
the amount of material transported from one compartment to the other is
too small to be measured with sufficient accuracy. On the other hand, when
t is chosen too large, the free diffusion boundary conditions are no longer
satisfied and eqns. (5) and (6) are not valid any more. A suitable com-
promise is found by the following reasoning.

When t is too large, the situation becomes one of "restricted diffusion".
Then the right-hand side of eqn. (3) should be replaced by a more compli-
cated function. Using the method of "reflection and superposition" [3]
(see also ref. 2, p. 23) this function can be developed into a convergent
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series of which we have calculated the first three terms. With these, and
using eqn. (4), eqn. (3) changes into

N(t)-N(0)

"r-
where erf and erf' are the error function and its derivative. When the value
of yDmtjl is chosen such that the first term equals 0.25, a calculation
of the second and third terms with the aid of tables of the error function
and its derivative [4] gives

{0.29 x 10-10}+...

From this it is seen that by chosing £<(0.25 l)2 n/Dm, the second term
contributes less than 0. l percent of the first, whereas the third and higher
terms are completely negligible.

The over-all experimental error in the left-hand side of eqn. (13) is about
0.4 percent, so that the error caused by neglecting the second and higher
terms, with this choice of t, is sufficiently small. This choice implies that
one quarter of the total amount of radioactivity, which was originally
present only in one compartment of the cylinder, has diifused into the
other compartment, at the end of an experiment.

3. EXPERIMENTAL

The diffusion cells used in this work are of the so-called shearing type,
which meaiis that a sharp boundary is formed by sliding two cell halves,
containing solutions of different concentrations, on top of each other.
In some respects our cells resemble the one used earlier in our laboratory
by COHEN and BRUINS [5] and other cells described by WANG and KENNEDY
[6] and by MEYERHOF and MEIER [7].

The cell is constructed as follows, starting from two circular plate glass
disks ha ving a thickness of 6 mm and a diameter of 67 mm. Besides a hole in
the centre, two sets of four holes, all at the same distance from the centre
are drilled into each disk with the aid of a diamond drill. The angles
between the holes of one set are 90°, but there is an angle of 55° or 35°
between the holes of the two sets. (fig. 1). The two disks are placed on top
of each other and two sets of four precision bore glass capillaries, one set
with 1.5 mm and one with 2.5 mm bore diameter, all 65 mm in length, are
inserted into the holes. The capillaries are cemented to the disks with
epoxy resin. During the setting of the resin, glass spacers (thickness 3 mm)
are placed between the disks. Care is taken that the parts of the capillaries,
sticking out of the disks are equal in length, and that the capillaries are
perpendicular to the disks. Then, two flanged brass bearings A and B
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(fig. 1) are cemented into the central holes of the glass disks. A stainless
steel shaft C (thickness 8 mm) keeps the bearings (which exactly match the
shaft) aligned during the setting of the resin. The bearing B is fixed to the
shaft by means of a conic pin, sticking through holes in the flange and the

Fig. 1. Diffusion cell.

Upper part: horizontal cross section. Lower part: vertical orosa seotion.

A, B, brass bearings; C, stainless steel shaft; D, hollow brass cylinder, to flx glass
disks in düïusion position; E, nut; F, gear-wheel; G, pulley; H, brass cell holder;

K, polyethylene stopper fixing container to capillary; L, glass platelet.
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shaft. The capillaries, which hold the disks together, are theii cut with a
diamond saw, sliding into the 3 mm space between the disks. The faces of
the glass disks are ground and polished until they are flat within 0.01 mm.
The same is done with the ends of the capillaries that stick out of the disks.
Care is taken to make the lengths of the capillaries (30 mm) in each cell
half, equal to each other within 0.01 mm.

When the cell is constructed as described above, one can slide the upper
half of the cell over the lower half, until in one position, the capillaries
are exactly on top of each other. This position is fixed with a stainless
steel rod fitting exactly in the bore of two hollow brass cylinders, which
are cemented to the glass disks at D.

One set of capillaries, either those with the 2.5 mm bore or those with
the 1.5 mm bore, is used for the measurement, while the other set is used to
fill or empty the measuring capillaries. Since the two sets are at angles of
55°, there is always a position of the disks at which the capillaries of one
set in one cell half can be filled or emptied through the capillaries of the
other set in the other cell half, while the remaining capillaries stay closed.
Before an experiment is started, a very small amount of grease and a few
drops of the solution used in the experiment are placed between the disks.
By means of a nut E and a rubber ring between the nut and the gear-wheel
F, the two disks are pressed together, leaving a thin transparent film of
solution between the disks. This liquid film prevents air bubbles from
being trapped in the capillaries when the disks are rotated with respect
to each other. The open ends of the measuring capillaries are closed with
small polished glass platelets using a very small amount of grease. The
capillaries are filled with the aid of a glass tube which is, at one end,
drawn out to a thin capillary, and, at the other end, connected to a hypo-
dermic syringe.

First the two disks are rotated with respect to each other over an angle
of 55°, and the capillaries in one cell half are filled. The capillaries in the
other cell half can be filled after a rotation over 20° in the opposite direction
and by turning the cell upside down. The solution with the highest density
is always put into the capillaries of the lower cell half. When the cell
has been filled, the disks are rotated with respect to each other in such a
way that all capillaries are closed. An advantage of our cell over simüar
other types, is that any air bubbles left in the capillaries can be easily
observed and removed.

The cell is put into a water thermostat, the shaft being fixed in the cell
holder H, which is tightly clamped to the wall of the thermostat bath.
The cell is allowed to stand for about one hour to establish temperature
equilibrium. During this period a small amount of solution escapes from the
capillaries into the liquid film between the disks, due to the expansion of
the liquid.

To start an experiment, the upper half of the cell is rotated by means of
the gear assembly at F and a pulley G, (which is driven by a flexible
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belt connected to an electromotor) until the capillaries are exactly on top
of each other. At this moment, which is taken as zero time for the experi-
ment, the stainless steel rod just slides into the bore of the cylinders at
D. The speed of rotation is such that there are five minutes between the
moment of first contact of the 2.5 mm bore capillaries and the moment
of complete coverage.

At the end of an experiment, the upper half of the cell is rotated by
means of the electromotor until all capillaries are closed. The time of the
experiment is taken from zero time to the moment when the capillaries just
loose contact during the rotation at the end of the experiment. In this
way a partial correction is applied for the times, at the beginning and at
the end of the experiment, during which the capillaries cover each other
incompletely. The cell is taken from the thermostat and the set of capillaries
which is not used for the measurement is provided with small glass con-
tainers connected to the capillaries by means of polyethene stoppers as
shown at K. The contents of the measuring capillaries are then transferred
to the glass containers, simply by sliding the small glass platelets L away,
after which the platelets and the capillaries are rinsed with one ml of water.
Finally, the containers are placed into sample bottles for a liquid scin-
tillation counter.

The thermostat, a Perspex box with doublé walls and a Perspex cover, is
placed on a heavy stone table in the basement of the laboratory. From a
second thermostat, water is pumped, through a flexible rubber tubing, into
the lower part of the first one; the water flows back into the second ther-
mostat by means of an overflow device.

The second thermostat, which holds the devices for temperature control
and the circulation pump, is placed on a console-table fixed to the wall
of the basement. In this way, vibrations are reduced to an acceptable
minimum. The temperature is kept at 25.00 ± 0.01° C.; usually the
fmetuations are less thaii 0.003° C. Six cell holders are placed in the
thermostat, so that six experiments can be performed simultaneously.
The electromotor driving the gear assemblies of these cell holders, is
supported by a heavy steel tube, fixed to the wall.

Analytical reagent ("AnalaR") B.D.H, chemicals and distilled water
were used to préparé the solutions. The radioactive chemicals were supplied
by the Radiochemical Centre, Amersharn, England. The solutions were
made up by volume or by weight; in the latter case, the concentrations
were converted into mole/volume units with the aid of tabulated densities.

The samples were counted in a Nuclear Chicago Mark I liquid scintilla-
tion counter. The counting liquid mixture consisted of: l l 1,4-dioxane;
110 gr naphtalene; 6 g P.P.O. (2,5-diphenyloxazole) and 50 mg P.O.P.O.P.
(p-bis- [2-(5-Phenyloxazolyl)]-benzene). Corrections for background and
quenching were applied in the usual way.
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4. BBSTJLTS AND DISCUSSION

In order to test the cells used in this work, some measurements were
performed with the systems 14C-labeled urea-urea-water and 14C-labeled
sucrose-sucrose-water at 25° C. Both D and D* for these systems are
reported in the literature. The results which are listed in tables l and 2,
were obtained with four different cells. The same cells were used in the
measurement with the system Na36Cl-NaCl—HgO. In the tables we give
mean values, obtained from the four capillaries in one experiment, together
with the standard deviation. The value obtained from each capillary
usually differed less than 2 % from the mean. For all measurements, the
2.5 mm bore capillaries were used.

In the tables we have marked with an asterisk the side of the boundary
at which the radioactive rnaterial was originally present. Tables l and 2
only give results of experiments in which either cs" = 0 or cs' = cs"; this
correspondends to Dm=D or to Dm = D *, respectively. The literature values
are given at the mean concentration cs.

ÏABLE l
Diffusion of urea in water at 25° C.

cell no.

3
4
3
4

Cs'

3/100 ml

1.00*
1.00*
1.00*
1.00*

Cs"

gr/ 100 ml

0.00
0.00
1.00
1.00

D X 105

c»J2/sec

1.36 ± 0.01
1.37 ± 0.02

D* X 105

cm2/sec

1.38 ± 0.01
1.39 ± 0.01

lit. value

1.37 [8, 9]

1.37 [9]

TABLB 2

Diffusion of suorose in water at 25° C.

cell no.

2
1
3
1
1
4
1
1

Cs'

gr/100 ml

0.50*
1.00*
1.00*
2.00*
3.00*
4.00*

Cs"
gr/ 100 ml

0.00

D X 106
cm^fsec

5.21 ± 0.02
0.00 5.18 ± 0.03
1.00
2.00
3.00
4.00 i .

5.00* 5.00
7.00* ' 7.00

£>* x 106

cm^jseo

5.08 ± 0.05
5.01 ± 0.05
4.94 ± 0.03
4.80 ± 0.02
4.72 ± 0.03
4.52 ± 0.02

lit. value

5.21 [10, 11]
5.19 [10, 11]

compare
ref. 12,
13 and
text.

In general the agreement with literature data is good. The self-diffusion
coëfficiënt s of sucrose eonfirm (within l %) the data recently published
by TILLBY and MILLS [12], but are substantially higher than the results of
IEANI and ADAMSON [13]. Our values of D* may be somewhat high due to
the error caused by convection during the formation of the boundary.
In order to estimate the magnitude of this error, we have done three
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short-time self-diffusion experiments with the urea-water system at
cs = 0.01 gjml. The durations of these experiments were 315, 1960 and
7640 sec., respectively. A straight line could be drawn through values of
D*t when plotted versus t. By extrapolation, a zero time correction of
200 sec was obtained, which is only about 0.2 % of the times used in the
experiments in table 1. The error caused by convection will probably be
lower in cases where cg' ^ cg". It may be concluded that the diffusion cells
used in this work, give a precision better than ± l % for measurements
in which cs' ^ cs".

In order to test the equations (7) and (8), two groups of four experiments
(2 x 16 capillaries) were performed with the system Na36Cl-NaCl-IÏ20 at
25° C. In one group, the flow of radioactive material has the same sign
as the total solute flow, whereas in the other group these flows have opposite
signs. In the calculation of Z>m with the aid of eqns. (7) and (8), we used
the following literature data for D and D* at the mean concentration
(cs = 0.625 gr/100 ml): Z>Naci= 1.484 x 10~5 cm2/sec [14] and D*ci- =
= 1.94xlO-5 cmz/sec [15].

The last value was checked by doing two self-diffusion experiments with
our cells. The results were: Z)*ci— = 1.93o and 1.93sxlO-5 cmz/sec.
In table 3, calculated and experimental values of -Dm are listed. The
experimental values are mean values from 16 capillaries; the standard
deviation of the mean is given between brackets.

TABLE 3
Diffusion of the 36Cl-ion in NaCl + H2O at 25° C.

cs' = 1.000; cs" = 0.250* (g/100 ml)

-Dm X 105 (cm^/sec)

exp.

2.303

(± 0.003)

calc.

eqn. (7)
2.249

eqn. (8)
2.325

cs' = 1.000*; c/ = 0.250 (gr/100 ml)

Dm X 105 (cm2/sec)

exp.

1.674

( ± 0.006)

calc.

eqn. (7)
1.659

eqn. (8)
1.677

The difference between experimental values and values calculated from
eqn. (7) is clearly beyond experimental error. The calculated values may
be somewhat high due to the fact that the value for Z**ci — used in the
calculations is probably too high.

Some results calculated in part I can now be used for a comparison with
the results of our experiments. Table 3 of part I (ref. 1) was computed for
the same value of Zlcg/cs as in our experiments for which Acs/cs =
= -0.75/0.625 =-1.2, whereas the value D[D* = 0.15 is close to the
experimental value: D[D* = 1.484/1.94 = 0.765. When D and D* are
calculated, using eqn. (7), from experimental values of Dm (compare
eqns. (44) and (45), ref. 1), we expect the correct value for D, but too high
a value for D*. The result indeed is D=1.487x 10~5 cmz/sec and D* =
= 1.976 x 10-5 cra2/sec.
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There are several ways to find a better result for D*, using eqn. (8). Here
we discuss two possibilities. In the first, the error in D* (D* calculated
with eqn. (7)) is computed as a function of D[D*, using eqn. (8). Table 3,
ref. l, is suitable for that purpose. From this table it is seen that the error
is + 2.6 % for Z>/Z>* = 0.75, which is close to the value 0.765 for our
system. When D* is corrected for this error, we obtain J5* = 1.92ex 10~5

cm2[sec.
Using the same table, the quotiënt of the two values for Z>m (for

A CI/GI = ± 2) can be calculated as a function of D f D*. The logarithm of
this quotiënt, when plotted versus D f D* gives approximately a straight
line. This suggests another method to obtain the value of D*. We com-
puted the quotiënt, with the aid of eqn. (8), for two values of DjD* close
to the experimental value 0.765, narnely DjD* = 0.75 (already computed for
table 3, ref. 1) and DjD* = 0.78125 (chosen for convenience in desk calcu-
lations). Using the experimental value of the quotiënt, 2.303/1.674= 1.376,
we obtained D/D* = 0.770 for the system under study, by linear inter-
polation in a logarithmic plot. Substituting the experimental result for D,
we find Z>* = 1.487x 10-5/0.770= 1.93ixlO-5 cm2{sec, which agrees quite
well with the results of our self-diffusion experiments.

We conclude that the experiments with the system Na36Cl-NaCl-H20
confirm the theory given in part I, and that it is possible in practice to
obtain both D and D* from experiments in which there exists a gradiënt
in the total solute concentration. It should be stressed that the theory is
a purely phenomenological one. We have not, for example, attempted to
give a more physical explanation for the fact that the two values of Dm,
obtained from the experiments with the system studied, differ substantially
from the self-diffusion coëfficiënt of the chloride ion. For this, the gradiënt
of the electric potential (sometimes called the diffusion potential) in the
diffusion boundary is mainly responsible.
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