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I. Introduction

Electrophoresis experiments are frequently carried out with the pur-
pose of measuring the electrophoretic velocity. The velocity per unit
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strength of the applied electrical de field is called the "electrophoretic
mobility" and is a characteristic property of the colloidal system that is
being studied.

In this chapter, the electrophoretic mobility (E.M.) will be considered
as a given quantity, and the discussion will be limited to the theoretical
interpretation of experimental mobilities. In this interpretation, the con-
cept of the electrical double layer plays a central part. This concept is
discussed extensively by Overbeek and Lijklema (1) in Vol. I of this
book; we shall frequently refer to that discussion.

As an example of a theoretical relation between the E.M. and prop-
erties of the double layer, we mention the well-known equation derived
by von Helmholtz (2) and improved by von Smoluchowski (3):

X

In Eq. ( 1 ) , U is the electrophoretic velocity and X is the strength of the
applied dc field; hence, U/X is the electrophoretic mobility, £ is the elec-
trokinetic potential; e and 77 represent the dielectric constant and the vis-
cosity coefficient, respectively, of the liquid surrounding the colloid parti-
cles.

It has been known a long time that the validity of Eq. (1) is rather
restricted, and a considerable amount of theoretical work has been carried
out in order to arrive at more general relations between the E.M. and
the properties of the double layer.

The older part of this theoretical work was reviewed in 1950 by Over-
beek (4). Since then, this subject has been treated in a number of review
articles and textbooks. Of these publications, we mention here the re-
views written by Booth (5) and by Haydon (6), and the textbooks of *
Kruyt (7) and of Rice and Nagasawa (8). A number of details occur- ^
ring in other review articles will not be reported here. i

In Section II of this chapter, we shall give a brief description of the
various effects that play a part in electrophoresis. Up to the present, a
rigorous theory, accounting for all these effects, has been worked out only
for a relatively simple model. In this model, the colloidal particle is con-
sidered as a rigid sphere surrounded by a Gouy-Chapman double layer.
The theory based upon this assumption will be treated in Section III.
In Section IV we shall discuss the theoretical work carried out on the
basis of less restrictive models, such as nonspherical particles. Finally,
Section V will be devoted to the electrophoresis of polyelectrolytes.
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II. General Considerations
Shortly after the dc field is applied to the colloidal solution, the system

reaches a stationary state in which the velocity of the particles in the
direction of the field is constant in time. There are four different forces
acting on a particle that is in electrophoretic motion (Fig. 1). The first one

FIG. I. Forces in electrophoresis.

is the force exerted by the dc field on the charge of the particle. This
force, which we shall denote by the vector k,, can be written

kj = QX (2)

where X is the dc field and Q is the charge of the particle. The second
force, k-,, is the Stokes friction. It can be expressed as

k2 = -/„U (3)

where U is the electrophoretic velocity and ƒ,. is the friction coefficient of
the colloid particle. For a rigid spherical particle that is large compared
to the molecules of the liquid surrounding it,

J't = UTTTja (4)

where u is the radius of the sphere. For a nonspherical particle, fc is still
proportional to TJ; the proportionality factor depends on size, shape, and
orientation of the particle.

The two remaining forces, k3 and k4, are caused by the presence of the
small electrolyte ions in the colloidal solution. In the vicinity of a colloid
particle, these ions are distributed unequally, with the result that the
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liquid has a net charge which is opposite in sign to that on the particle.
This is the so-called ionic atmosphere. When the particle is a polyelectro-
lyte coil there exists, in addition, a similar unequal distribution of ions
in the region occupied by the coil.

The electric dc field exerts a force on the ions in the ionic atmosphere.
This force is transferred to the molecules of the solvent. The resulting
How of the liquid causes a retarding force, ka, on the colloid particle. This
effect is called "electrophoretic retardation."

Furthermore, the distribution of ions in the vicinity of the particle is
deformed when the dc field is applied. This is caused by the fact that
the particle moves away from the center of its ionic atmosphere. The
Coulomb forces between the charge Q and the ions tend to rebuild the
atmosphere in its "proper" place. However, this takes a finite time called
the relaxation time. Hence, in the stationary state the center of the ionic
atmosphere constantly lags behind the center of the particle. The result
is an electrical force, k4, on the charge of the particle. This force, which
is, in most cases, a retarding one, is called "the relaxation effect." In a
drained polyelectrolyte coil, the ionic distribution inside the coil is also
deformed, which makes the relaxation effect more complicated.

The two effects symbolized by k* and k4 are the same as those defined
in the Debye-Hiickel theory of the conductivity of strong electrolytes (9).
In this theory, the two forces are calculated separately and then linearly
superimposed. For colloid particles, such a linear superposition would
lead to a serious error, because in this case the mutual interactions be-
tween the two effects are considerable. Hence, for colloid solutions, k3

must be calculated for a deformed ionic distribution, and in the calcula-
tion of k4, the velocity pattern in the liquid must be taken into account
explicitly.

In the stationary state, the sum of all forces acting on the particle is
zero:

k! + k2 + k:) + k4 = 0 (5)
Equations (2), (3), and (5) can be combined to give

U = ) (QX + k, + k4) (6)
Jc

Generally, the forces k3 and k4 are complicated functions of several
parameters of the colloidal solution, such as the ^-potential, the dimensions
of the colloid particle, and the charges, concentrations and mobilities of
the small ions in the solution. In a number of limiting cases, most of
which will be discussed in Section III, rather simple expressions for the
electrophoretic mobility are applicable.
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In order to calculate the forces ks and k4, one needs a quantitative
description of the electrical double layer. In most calculations, the theory
of Gouy (10, 11) and Chapman (12) has been used. This theory leads
to the so-called Poisson-Boltzmann equation:

,. , , -r-^ zte\ff
div grad t = - — £»!#,• exp

where i// is the electric potential in the double layer, e is the elementary
charge, k is Boltzmann's constant, and T is the absolute temperature;
«, and Zt are the average concentrations and the valences, respectively,
of the small ions in the double layer. A more detailed discussion of the
Gouy-Chapman theory, including a derivation of Eq. (7), can be found
in Vol. I (1). In an external dc field, the potential distribution is disturbed
(relaxation effect) and cannot be described by Eq. (7). But even in
calculations where the relaxation effect is accounted for, Eq. (7) serves
as a useful first approximation. For the limiting case z&y/kT « 1, the
Poisson-Boltzmann equation can be reduced to its linear form

div grad ^ = K?\l> (8)

where

K2==47re2 21n,z*/tkT (9)
1

Equation (8) was first introduced by Debye and Hiickel (13) and has
also been used in some electrophoresis theories (cf. Section III). The
quantity l/ K has the dimension of length and is a measure of the thick-
ness of the double layer.

At the end of this section we wish to emphasize a few important fea-
tures of the model that is used in all electrophoretic theories, at least for
rigid particles. It is generally assumed that, when a rigid particle moves
through a liquid, a thin layer of liquid adjacent to the wall of the particle
remains completely fixed to it. The boundary enveloping the fixed layer
of liquid is called "the surface of shear." Whereas \l/0 is defined as the
potential difference across the entire double layer, f is the potential dif-
ference across its mobile part; in other words, £ is the value of <j/ at the
surface of shear. Usually, f has the sign of t//0 but a smaller absolute value.
Furthermore, the symbol Q [cf. Eq. (2)] denotes all the charge that is
present within the surface of shear. As this may (and usually does) in-
clude some of the bound counterions, Q may be smaller than the particle
charge found, for instance, by titration. In this chapter, we shall use the
term "electrokinetic charge" for Q. Finally, we observe that the symbol
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a in Eq. (4) can be more precisely defined as the distance from the
particle to the surface of shear.

III. Theory for a Rigid Spherical Particle

A. HISTORICAL INTRODUCTION

The finding of a relation between the electrophoretic mobility and the
properties of the double layer is a classical problem in colloid science.
The Helmholtz-Smoluchowski Eq. (1) can be considered as the
oldest solution of this problem. It is not limited to any special particle
shape (cf. Section IV,G). The derivation of Eq. ( 1 ) has been discussed
in several other publications (see e.g., References 4, 7, 8, 14) but we
shall review it here because it illustrates so many of the ideas discussed
in this chapter.

If the particle is a nonconductor of electricity and the electric double
layer is thin compared to the radius of curvature of any part of the
particle surface, the directions of the external field and of the flow of
the liquid are parallel to each other and to the wall of the particle in the
entire double layer. Consider a portion, S, of the surface of shear which
is so small that its curvature may be neglected and let x be the distance
from this surface (Fig. 2). Suppose the particle is positively charged and
moves to the right with a velocity U, parallel to the direction of the ex-
ternal field, X. In the vicinity of the particle, the lines of force of the
external field are distorted and are symbolized by the vector E; the

U

FIG. 2. Diagram for calculation of von Smoluchowski.
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velocity of the liquid with respect to the particle is denoted by u. In the
double layer around a positive particle, E and u are parallel but have
opposite directions.

Let us now consider the forces acting on a volume element of liquid
having an area A (parallel to the wall) and an infinitesimal thickness
dx (perpendicular to the wall). First, as adjacent portions of the liquid
move with different velocities, the volume element is subject to viscous
forces. Its upper surface is acted upon by a force

'SI a«
and its base by a force

du\ . l du \ . [ d I du}~] ,
-r-j = A(ri-r +A\-r(ri-r \ dx (11)
dx 'x+dx \ dx >x Ldx \ dx 1 Jx

A force having the same direction as that of E is considered to be positive
(du/clx < 0); the right-hand side of Eq. (11) is obtained from the left-
hand side by means of a Taylor expansion. The electrical force acting on
the ions (and, hence, on the liquid) in the volume element is

pEA dx (12)

where p is the charge density in the liquid. This "volume force," which
causes the electrophoretic retardation, was already discussed in Section II;
in our case it is negative because p is negative. By means of Poisson's
equation,

T" ~rdx\dx

the charge density can be expressed in terms of \j/, the electric potential
of the double layer.

In the stationary state, the sum of all forces is zero; hence, by combi-
nation of Eqs. (10) to (13),

rdx \ dx

for any value of x. Strictly speaking, Eq. (14) should contain a third
term accounting for differences in hydrostatic pressure in the liquid [cf.
Eq. (25)] but von Smoluchowski (3) has shown that in this special case
the pressure term has no effect on the result of the derivation.

We now multiply all terms of Eq. (14) with the variable distance x
and integrate the result over the region 0 < x < 8, where 3 is a value of
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x just outside the range of the double layer. Since E does not depend on x
in this region, we obtain

r*
Ja

d
_j
dx

_ ,i j
dx

,
ft raifrit- = ̂  f*4ir «/o

d / ay i ,
T- \ e j1-1 dx
dx \ dx

Integration by parts leads to

rfu
dx

f
- J» *

rs

-A É (15)

Since, at x = S, both da/dx and d^/dx are zero, the first terms on either
side of Eq. (15) vanish. Solving the remaining integrals (assuming that €
and 77 are independent of x), we obtain

47T

At the surface of shear (x — 0), u = 0 and \j/ = t, (both by definition);
at x = B, $ = 0. Hence, just outside the double layer,

«fu = - E (16)

By considering the properties of u and E in the region outside the double
layer (the liquid is incompressible and the charge density is zero) it can
be shown (3) that in this region u and E are everywhere parallel and pro-
portional to each other and that the proportionality factor is the same
everywhere. In other words, Eq. (16) is also valid at a large distance from
the particle, where u = —U and E = X (both by definition). It follows
that

u = jL
X 47TÎJ

(17)

which is identical with Eq. (1). It is of interest to note that Eq. (17) is
derived without any specific assumption concerning the distribution of
ions in the double layer; only Poisson's equation is required. We further
observe that the relaxation effect was not considered in the derivation (see,
however, Section III,G).

The Debye-Hückel theory of strong electrolytes led to a further devel-
opment of the theory of electrophoresis. In 1924, Hiickel (15) published
a detailed calculation of the electrophoretic retardation force (k3) acting
on a spherical particle. His result was

k3 = - Q)X (18)
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When we combine this result with Eq. (6), substituting Eq. (4) and
neglecting k4, we obtain

_
X ~ 6m,

An elementary derivation of Eq. (19) was given by Rutgers and Over-
beek (16), on the basis of a simple treatment of electrophoretic retarda-
tion introduced by Önsager (17). From the paper of Rutgers and Over-
beek it follows that Eq. (19) can be derived without considering the
detailed structure of the double layer; only Poisson's equation is required.

The apparent contradiction between Eqs. (17) and (19) was re-
solved by Henry (18), who gave a critical analysis of the assumptions
underlying these equations. As we have mentioned, von Smoluchowski had
assumed that, in the entire double layer, the direction of the dc field is
parallel to the particle surface. Huckel's treatment contains the assump-
tion that, everywhere in the double layer, the lines of force run straight
from anode to cathode. Therefore, Htickel arrived at a higher value of
the electrophoretic retardation force than did von Smoluchowski.

The deformation of the applied field by the presence of the particle
was accurately taken into account in Henry's calculation of k3. The shape
of the field depends on the electrical conductivities of the particle and of
the liquid surrounding it. In this section, we consider only an insulating
spherical particle. For this case, Henry's result can be written

$-<£ƒ.(«") (20)

where K is given by Eq. (9) and a is defined at the end of Section II. The
dimensionless product KÜ is a measure of the ratio between the particle
radius and the thickness of the double layer. In the limiting case
KU — » oo (i.e., when the double layer is very thin compared with the
radius), /i(«a) = % and Henry's result is reduced to the Helmholtz-
Smoluchowski Eq. (17). When «a^O, ji(na) = 1 and the result of
Hiickel, Eq. (19) , is obtained. A graph of the function /(KO) = %/I(KÖ),
as well as analytical expressions for this function, can be found in Henry's
paper (18). For future reference, we mention that Henry's calculation
was based upon the linear equation (8).

In all calculations mentioned so far, the relaxation effect (k4) was neg-
lected. In the decade between 1928 and 1938 several authors (19-23)
have treated the relaxation effect for colloidal solutions. A critical review
of these calculations was given by Overbeek (24, 25). Because of the
mathematical difficulties, the validity of the results is rather restricted.

More recently, Overbeek (24, 25) and Booth (26, 27) independently
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have given detailed treatments of the relaxation effect for a spherical
insulating particle. Both authors have used the Gouy-Chapman theory as
a first approximation for the description of the ionic atmosphere; the
deformation of the atmosphere by the external field (the relaxation ef-
fect) was introduced in the higher approximations. A major mathematical
problem was caused by the fact that, for a spherical colloid particle, Eq,
(7) has no tractable analytical solution, whereas the linear equation
(8) is, even as a first approximation, definitely insufficient for obtaining
the relaxation effect. As a compromise, both Overbeek and Booth have
used series solutions of Eq. (7), of the type given by Gronwall et al.
(28, 29).

The results of Overbeek and of Booth can be expressed in the form of a
power series in the f-potential:

In Eq. (21), ƒ, (K.Ü) is the function occurring in Henry's result, Eq.
(20); the coefficients Cn are complicated functions of *a and of the
valences and the mobilities of the small electrolyte ions. Because of the
mathematical complications, only a few terms of the power series could
be calculated. Overbeek obtained the coefficients C» and C3, whereas
Booth calculated, in addition, C4; the term C4£

;1 is relatively small. The
results of the two authors are in good agreement. Additional details can
be found in the original publications (24-27), in review articles by
Overbeek (4), by Booth (5), and by Haydon (6), and in Section III,D,2
of this chapter. A few important conclusions will be mentioned here.
The function between brackets in Eq. (21) is reduced to Henry's func-
tion /! (KÖ) in the following circumstances: (a) £ « 25 mV (arbitrary
values of KÖ), (b) «a«! (arbitrary values of £), and (c) KÜ » 1
(arbitrary values of f ) . This implies that the relaxation effect is negligible
when one of these conditions is met. For KÜ » 1 or KÜ « 1, Eq. (21)
approaches the same limiting expressions [Eqs. (17) and (19), respec-
tively] as does Henry's equation (20). For the case «a» 1, this was
proven in an elementary manner by Overbeek (4, 30). From Eq. (21)
it could be concluded that, for intermediate values of KU (say, KÜ = 5),
the relaxation effect gives an important contribution, increasing with in-
creasing f -potential. However, because the power series in Eq. (21) is
incomplete, the exact magnitude of the relaxation effect remained un-
certain.

A recent treatment of the electrophoresis of a spherical particle was
published by Pickard (31). His model and basic equations are similar
to those of Overbeek (24, 25) and of Booth (26, 27), although they
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contain a few additional features. However, because of approximations
introduced in certain steps of his calculation, Pickard arrives at a result
predicting that U/X is proportional to £; this implies that the result does
not account for the relaxation effect. More detailed comments on Pickard's
paper can be found in a publication by Wiersema et al. (32).

The appearance of electronic computers made it possible to deal more
efficiently with the mathematics involved in the theory of electrophoresis.
In 1953, Hoskin (33) computed exact solutions of the Poisson-Boltzmann
equation (7) for a spherical double layer. Loeb et al. (34) improved
and extended the work of Hoskin in such a way that a suitable basis
for the numerical computation of the E.M. was obtained. This computa-
tion was carried out by Wiersema et al. (32, 35, 36). The fundamental
assumptions and the results will be reviewed in Sections III, B through
111, E. For more details the reader is referred to the original publications.
Reference 36 contains the complete results and a discussion of practical
applications; in Reference 32, the emphasis is on mathematical methods.

B. PHYSICAL ASSUMPTIONS

In their computation, Wiersema et al. (36) used the same assumptions
as did Overbeek (24, 25). They are as follows: (1) Only a single par-
ticle is considered, which implies that the interaction between colloid par-
ticles is neglected. (2) It is assumed that the colloidal solution follows
Ohm's law; in other words, all terms nonlinear in the dc field are neg-
lected. (3) In the computation of the relaxation effect, the Brownian
motion of the colloid particle is neglected. (4) The colloid particle (plus
the adjacent layer of liquid that moves with it) is treated as a rigid sphere.
(5) The dielectric constant is supposed to be the same everywhere in the
sphere. (6) The electric conductivity of the sphere is assumed to be zero.
(7) The viscosity coefficient of the liquid surrounding the sphere is as-
sumed to be independent of position. (8) The electrical double layer is
described by the Gouy-Chapman theory. This implies, among other things,
the following assumptions: (a) the dielectric constant is independent of
position; (b) the small electrolyte ions are point charges that interact
with the particle through Coulomb forces only; (c) the charge of the
sphere is distributed uniformly on its surface. (9) Only one type of posi-
tive and one type of negative ions are considered to be present in the
solution.

The discussion of these assumptions is postponed to Sections IV and V.

C. MATHEMATICAL EQUATIONS

We shall now give a very brief discussion of the differential equations
that were solved in order to obtain the E.M. More details can be found
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in thé publications of Henry (18), Overbeek (24, 25), Booth (27), and
Wiersema et al. (32, 35, 36).

First, we have Poisson's equation

r i , — 4rp — 4.7r<' , ,.,.,,
div gracl A = = (~^+ — ~ _ v _ i (22)

In Eq. (22), A is the total electric potential, which includes the contribu-
tions of the charges on the sphere and in the liquid and of the external
field; v+ and v_ are the local ion concentrations in the distorted atmos-
phere. By writing Poisson's equation in this general form, the relaxation
effect is accounted for.

Because there is no space charge within the sphere,

div grad A, = 0 (23)

where A, is the electric potential inside the sphere.
The concentrations \>_ and v_ are governed by two transport equations

that can be written in a combined form as follows:

div =p ^y^- grad A — -j- gracl v± + v±u = 0 (24)
L . /= r - J± -1

where ƒ+ and ƒ_ are the friction coefficients of the ions, and u is the
velocity of the liquid with respect to the particle. The three terms within
the brackets indicate that the ions are transported by migration in the
electric field, by diffusion, and by convection, respectively. In a coordi-
nate system fixed to the particle, the divergence of the total flow is zero
because, in the stationary state, the ionic distribution around the sphere
remains constant in time.

The flow of the liquid is described by the Navier-Stokes equation

T) rot rot u + gTud p + p grad A = 0 (25)

where p is the hydrostatic pressure in the liquid and p is given by Eq.
(22). Equation (25) expresses, in a more general way than does Eq.
(14) that, in the stationary state, the forces on a volume element of
liquid balance each other.

Finally, because the liquid is incompressible,

div u = 0 (2(5)

With the aid of suitable boundary conditions, Eqs. (22) to (26) were
solved simultaneously by means of successive approximations, using an
IBM 704 electronic computer. As a result, A, v+, v-, u, and p were
obtained as functions of position. This leads to detailed expressions for
the forces k3 and k.j (cf. Fig. 1), which can be substituted into Eq. (6)



1. I N T E R P R E T A T I O N Of L L E C T R O P H O R E TIC M O B I L I T I E S 13

n order to find the electrophoretic velocity. The results can be con-
sidered as a completion of the power series given in Eq. (21).

X RESUITS AND DISCUSSION

1 . Dimensionier Variables

The results of Wiersema et al. (32, 35, 36) were obtained in the form
)f tables of the dimensionless quantity E, defined by Eq (27)

„ OlTTJf' U
E^WfX (2'}

vhere U/X is the E.M. For dilute aqueous solutions at 25"C, E = 0.7503
< 10' (U/X), when U/X is expressed in square centimeters per volt
1er second. The function £ was computed for several combinations of
he parameters r . r . . ««, v„. ni , and m_. The quantity y„ is defined
iy Eq. (28) :

!h='/T (28)

'"or aqueous solutions at 25 "C, .v„ ~ 0.0389£, when f is expressed in
nillivolts. The parameters m^ and m_ are given by

vhere N„ is Avogadro's number and A^ n and A-" are the limiting equiva-
cnt conductances of the small ions. These conductances appear as a
onsequence of the introduction of the friction coefficients, ƒ+ and ƒ_,
n Eq. (24) . For aqueous solutions at 25°C, m±= 12.86 (;J-

/A±"),
vhen Aj' are given in ohm^1 cm- equivalent^1.

In the calculations, the colloid particle was assumed to be positively
harged. Consistent sign reversal makes the results applicable to negative
olloids; it will be helpful to remember that the subscript + always re-

'ers to co-ions, and the subscript — to counterions.

I. Analytical Approximations

In order to facilitate the comparison between the approximate equa-
lons of Section III, A and the computer results of Wiersema et al., we

Nhall write the approximations in terms of dimensionless variables. By
ombination of the Helmholtz-Smoluchowski equation (17) with Eq. (27)

we obtain

(30)
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In the same notation, the result of Hückel, Eq. (19), reads

Henry's equation (20) can be expressed

K = 'AfiM) (32)

The calculation of Overbeek (24, 25) leads to

K = ?/o.fi(*fl) - i/o [z^M + y2(m+ + mJhW] (33)

for symmetrical electrolytes and to

E = yanw - yfr- - z+)M"«) - ! f > - ± = r f , (Ka) (34)
- -

for unsymmetrical electrolytes. In Eq. (33), z is the valence of both
small ions; Eq. (34) applies to a positively charged colloid particle.
Tables and graphs of the functions / „ (KÜ) can be found in References
4, 24, and 25.

The result of Booth (27) is limited to symmetrical electrolytes and
can be written

E = j/o

+ yl\3z(m+ - m_)Z*(Kr t) i(3r>)

The function X^(KU) is identical with / I (K«) in Eqs. (32) to (34).
Graphs of the functions X3*(xa), Y3*(ica), ZS*(KU), and Z4*(Kul) are

given in Fig. 2 of Booth's paper (27).

3. Results for 1—1 Electrolytes

Figure 3 shows the computer results for univalent electrolytes and for
m+ = m_ — 0.184 (A~ " =. 70 ohm"1 cm2 equivalent"1 in aqueous solu-
tions at 25°C). No data were obtained for y0 > 6 (f > 150 mV), because
in this region the computer program failed to give convergent results.

In Figs. 4 and 5, some of these computer results are compared with
the analytical approximations of Henry (18), of Overbeek (24, 25), and
of Booth (27).

From Figs. 3 to 5, the following conclusions can be drawn: (1) The
relaxation correction is appreciable and increases sharply with increasing
f -potential; (2) the relaxation effect is largest for moderate values of
KÜ and is negligible when «a is very small or very large; (3) for inter-
mediate values of KÛ (say, 5 < «a < 50), the computer results predict a
maximum in the curve of the E.M. vs £ (this cannot be concluded from
Fig. 4, but it does follow from Fig. 3); and (4) for low values of £, the
approximations of Overbeek (24, 25) and of Booth (27) are quantita-
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Fio. 3 Plot of £ as a function of / « for different values of jo (z* = Z- = l,
^ — m. — O 184).

Fio 4 Plot of E as a function of v for z = ; —l, /.« = 5 «i* = /» = O 184
I—Henr> tq (32) , II—Overbeek, tq (33) III—Booth, Eq (35), IV—Wieisema
e/ <7^, numerical results.
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lively confirmed by the results of Wiersema et al.; for higher {-potentials,
the relaxation effect appears to be overestimated by these approximations.

Another conclusion, which follows from further details given by Wier-
sema et al. (32, 35, 36) concerns the electrophorctic retardation. In
Section III,A we mentioned that Henry (18) had used the linear equation
(8) instead of Eq. (7) . The computer results show that, as long as only
the electrophoretic retardation is considered, the linearization of Eq. (7)
introduces a surprisingly small error. This conclusion also applies to other
valence types of electrolytes.

001 ooo

F(G. 5. Plot of E as a function of KO for ;+ = z_ = 1, y0 = 5, »u = in- = 0.184.
I—Henry, Eq. (32); II—Overbeek, Eq. (33); III—Booth, Eq. (35); IV—Wiersema
et al., numerical results.

The dependence of E on ni f and m__ was investigated by means of a
few special computations (for univalent electrolytes only). It was found
that, as the mobilities, A f ° and A._° increase, the relaxation effect de-
creases, with the result that the E.M. increases. For example, at KÜ — 5
and >'o = 5, and for a positive colloid particle, the value of E changes
from 3.17 to 3.23 when K+ is replaced by H + ; for a negative colloid,
when K^~ or H~ are acting as counterions, the corresponding increase of
E is from 3.17 to 3.46. In all circumstances where the relaxation effect
is negligible, the E.M. does not depend on A+° and A_°.

4. Other Types of Electrolytes

Additional types of electrolyte considered by Wiersema et al. (32, 35,
36) are 2-2, 2-1, 3-1, 1-2, and 1-3. Because of computational problems,
the results are limited to rather low values of y0.
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The effect of the valences on the E.M. is pronounced, especially for
counterions. Multivalent counterions give a negative relaxation effect, i.e.,
a decrease of the absolute value of the E.M. For these ions, the absolute
value of the relaxation effect increases strongly with increasing valence.
For multivalent co-ions, most of the data show a negative relaxation ef-
fect which decreases in absolute value with increasing valence; for tri-
valent co-ions, the relaxation effect is positive in the region 0.01 < KÜ < L

5. Application to Practical Cases

In the application of the theory, the problem is how to calculate £,
or the corresponding electrokinetic charge, when the E.M. and certain
parameters, such as KÜ, are given. This problem is extensively discussed
in References 35 and 36. We wish to emphasize that the equations given
in Section III.A may be good approximations in many cases; these equa-
tions should be used whenever possible, because it is always more con-
venient to work with analytical expressions than with a set of numerical
data. We shall now give some details (for 1-1 electrolytes) that may be
helpful in estimating the validity of the analytical approximations when
the E.M. is known from experiment and the ^-potential is still unknown.
Figure 6, indicating the range of validity of the various treatments, serves
as an illustration of the following considerations.

First, one should decide, whether one of the very simple expressions
of von Smoluchowski [Eq. (30)] , or of Hiickel [Eq. (31)] is valid.
This can be done by inspection of Fig. 3; when the experimental combi-

ooi

F>i. 6. Range of validity of calculations of the electrophoretic mobility for 1 — I
electrolytes. Solid lines correspond to an error of l mV in the (-potential; dotted
lines, to an error of 2.5 mV. For further explanation see text.
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nation of E and KU lies w i t h i n a region where E does not depend on KU,
one may use Eq. (30) U« » 1 ) or Eq. ( 3 1 ) ( « « « I ) . In Fig. 6, the
range of validity of these equations is shown in a different way. For
combinations of E and «« which lie inside the region in the lower left-
hand corner of this diagram. Eq. ( 3 1 ) wi l l lead to an error of less than
l mV in the ^-potential. In this context (and in the following discussion
of Fig. 6) an error means a difference between two values of £ calculated
by means of the analytical approximation and by means of the computer
results of Wiersema et al. (32. 35. 36) . [The drawn curve forming the
upper boundary of the "Hiickel region" is rather schematic; e.g., it does
not account for the fact that, for Kci = 10 and >•„ = 3, Eq. (31 ) happens
to be exact (cf. Fig. 3 ) . because, for this combination of KU and y,,. the
Henry correction and the relaxation correction to Eq. (31) just compen-
state each other.] The val id i ty of Eq. (30) has been indicated in a similar
way, the drawn curve corresponding to an error of l mV in £.

When it is decided that Eq. (30) or (31) is not sufficient, the next
step is to find out whether Henry's equation (32) is valid. This is shown
in Fig. 6 in a somewhat more detailed way; when an error of 2.5 mV
in £ can be tolerated, the "Henry region" is extended upward to the
lower dotted line. The diagram gives similar information with respect
to Overbeek's equation (33) and to Booth's equation (35) for univalent
electrolytes. Figure 6 applies to the case in, = /;; _ = 0.184 [ef. Eq. (29)],
but it is a good approximation for other values of in, and / / ? _ .

Detailed instructions for the calculation of £ from the computer results
are given by Wiersema et al. (35, 36). The limitations of the computer
results for univalent electrolytes are given by the upper drawn line in
Fig. 6. If an electrophoresis experiment implies a combination of E and
na (e.g., E = 4, K« =i 5) which lies above this line, it is not possible to
calculate the ^-potential from t IK computer data. This situation may exist
either because the computations were not carried through sufficiently
far (i.e., for v,, < 6 o n l y ) or because the theoretical curve of E vs y<,
exhibits a maximum (cf . Section 1II ,D,3).

The electrokinetic charge, Q, can be calculated from the ^-potential.
For this purpose, the equation

is sometimes used. This is, however, a linearized approximation based
upon Eq. ( 8 ) ; it is valid only for low values of f and KCI. More exact
numerical relations between Q and £, based on the solution of Eq. ( 7 )
for a spherical particle, were obtained by Hoskin (33) and by Loeb
er al. (34). Some prel iminary results of the latter authors are given in
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Vol.1 (1) . Reference 34 contains more details, which include the relation
between Q and £ for unsymmetrical electrolytes and a discussion of Eq.
(36) and other analytical approximations.

6. Comparison between Theory and Experiment

One of the requirements that should be met by a sensible theory is
that, at least in principle, it should be possible to prove or disprove it
experimentally. With the theory of electrophoresis, this is rather a prob-
lem, at least when a complete quantitative test is required. Because the
problem is a fundamental one, we shall discuss it here, repeating some
arguments given elsewhere (35. 36).

The theory predicts a relation between the electrophoretic mobility
and the f-potential. Of these two, the E.M. can be measured directly,
whereas the ^-potential (or changes of £) cannot.

Following an indirect approach, one may try to correlate E.M. measure-
ments with ^-potentials obtained from other electrokinetic phenomena,
such as electrosmosis and streaming potential. But such values of f are
always calculated from a theory that has many features in common with
the theory of electrophoresis itself. These features (such as the assump-
tion of constant values of € and 17 in the mobile part of the double layer)
escape testing if one follows this approach.

Another method would be the correlation of E.M. measurements with
other experiments that provide information concerning the double layer.
As examples we mention colloidal stability, electrocapillary phenomena,
direct measurements of changes of the surface potential across monolay-
ers, and determinations of the particle charge by titration. But none of
these methods leads directly to the ^-potential or to the electrokinetic
charge. Hence, additional theoretical assumptions concerning, for instance,
the relation between !//„ and £, cannot be avoided. Because the theory of
the inner region of the double layer is by no means perfect, this type of
approach involves the risk of testing too many theories at the same time.

From these arguments it follows that it is not possible to obtain values
of f that are both quantitatively reliable and completely independent
of the theory of electrophoresis. Hence, we must be satisfied with testing
the theory in a semiquantitative way. For this purpose, suitable E.M.
measurements are needed in the first place, whereas other experiments,
such as those mentioned above, can give valuable additional information.

The requirements that should preferably be met by suitable E.M. meas-
urements, are discussed by Wiersema et al. (35, 36). For instance, it is
important that certain variables, such as KÜ and £, can be changed inde-
pendently of each other. When «a is changed by varying the ionic
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strength, £ may also change considerablv Hence, it is better to \\ork with
monodisperse colloidal solutions ot different particle sizes

From a survey of the literature Wiersema et al (35 36) conclude,
that there is a lack ot experimental data that can be used to test the-
oretical predictions This has been emphasized by other authors (4
26, 31) We know of only four investigations (20, 37-40) that were
carried out systematically with a view to checking theoretical results for
rigid spherical particles Of these, the measurements by Moone\ (20)
and by Kemp (37) are not suitable to test the more recent theories
Mooney's experiments were done with oil droplets, in which internal cir
culation may have occurred invalidating the assumption of rigidity ot
the particles In Kemp s experiments the mobilities are so low that hardly
any influence of relaxation is expected The work of von Stackelberg and
Heindze (38) was done with the purpose of testing the results ot O\er-
beek (24, 25) and of Booth (26 27) The very recent investigation by
Shaw and Ottewill (39, 40) on monodisperse polystyrene latices is bv
far the most systematic and comprehensive one

We shall now review the conclusions that can be drawn from inspection
of the experimental work that is now available, more detailed discussions
can be found m References 35 and 36

An interesting feature of the computer results is the maximum m the
(E y(}) curve ( e g , for 1-1 electrolytes and 5 < KÜ < 50, cl Fig 3 )
This implies that the E M does not exceed a certain value whatever
happens to the f-potential Hence, it is of interest to find out whether
mobilities have been observed (for appropriate values of KÛ) that do ex-
ceed the predicted maximum A survey of the literature (35 36) shows
that such observations are very exceptional The exceptions are data on
silver iodide sols published by Troelstra and Kruyt (41, 4 2 ) and by
Watanabe (43) and especially some results found b> Shaw and Ottewill
(39, 40) with polystyrene laticcs The differences between predicted max-
ima and observed mobilities are small but they do indicate that the theory
is somehow incomplete and that in those extreme cases (and, perhaps
in other ones as well ) the relaxation effect has been slightly overesti-
mated On the other hand, the same literature study (35, 36) shows
that the computer results explain more facts than do the approximate
equations of Overbeek (24 25) and of Booth (26, 27) In particular
a number of cases of high mobilities have been observed by Stigter and
Mysels (44) on soap micelles, by Shaw and Ottewill (39, 40) on polymer
latices, and by Troelstra and Kruyt (41, 42), Watanabe (43), and Parhtt
and Smith (45, 46) on silver iodide sols These mobilities are above the
limits predicted b\ the equations of Overbeek and of Booth but well
within the range of the computer data
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Another important question is whether the E.M. changes with «a in
the predicted way. In this respect, the theory is qualitatively confirmed
by a number of measurements, such as those of von Stackelberg and
Heindze (38) and especially by the work of Shaw and Ottewill (39, 40).
In his recent thesis, Shaw (39) also reports evidence that, qualitatively,
the E.M. varies with the mobility of the counterions as predicted by
the computer results.

We conclude that the recent theory presented in this section is basi-
cally sound, but probably needs some refinement; further, that more sys-
tematic experiments seem to be most needed at this stage.

IV. Theories for Other Models

The calculations dealt with in Section III have been based on a model
and on certain assumptions listed in Section III,B. In the present section
we shall consider to what extent these assumptions restrict the applica-
bility of the theory and what happens to the theory when one or more
of these restrictions ,ire removed. Of course, the two aspects are closely
connected; in some respects, the second aspect must be dealt with before
the first one can be handled. The reader of this section will find that
there are still many unsolved theoretical problems.

In the discussion that follows, the list of assumptions given in Section
IH,B will be adopted as a framework. We have found it convenient to
start at the bottom of the list and to proceed upward from there.

A. MIXTURES OF ELECTROLYTES

In many practical cases, mixtures of two or more electrolytes (e.g.,
from added buffer solutions) are present in the colloidal system. Let us
consider to what extent these cases are covered by the theory.

In the theory of Henry (18), the small ions are characterized only
by their valences and not by their mobilities. Equations (17) and (19),
the limits for large and small <a, respectively, are even completely inde-
pendent of the nature of the small ions.

For mixtures of univalent electrolytes, Fig. 6 can be consulted in order
to find out whether Henry's theory can be used; for mixtures of unsym-
metrical electrolytes, this decision must be based upon the data given by
Wiersema et al. (35, 36). When the electrolytes are of different valence
types (e.g., Nad + K2SO4), the decision is complicated by the fact
that Wiersema et al. have not included mixtures of different valence
types. In this case it is advisable to let the valence of the most highly
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charged counterion decide the issue; e.g., for a positive colloid in NaCl
4- K;.SO4, the data for 1-2 electrolytes should be inspected. For a nega-
tive colloid in the same electrolyte mixture, the use of Fig. 6 will not
cause serious errors.

Once it has been found that Henry's theory can be used, the calcula-
tions are straightforward because the ionic valences enter into Henry's
result [Eq. (20)J only through the parameter K [cf. Eq. (9)]. The value
of K is easily calculated even for mixtures of different valence types.

The theory of the relaxation effect gives results in which the ionic
valences appear not only indirectly, through KÜ, but also as separate
parameters that have a strong effect on the E.M. These results also de-
pend, in a much less pronounced way. on the mobilities of the small
ions.

For mixtures of univalent electrolytes, the theory of the relaxation
effect can be applied (35, 36) without appreciable errors by taking num-
ber averages of the ionic mobilities, or of the parameters m+ and m_
[cf. Eq. (29)]. For mixtures of unsymmetrical electrolytes of the same
valence type, one can take similar number averages and account for these
average mobilities by means of an approximate method suggested by
Wiersema et al. (35, 36). Measurements of the E.M. in electrolyte mix-
tures of different valence types are difficult to interpret when the relaxa-
tion effect cannot be neglected; for this case no calculations are available
and no reliable approximate method can be suggested.

In the calculation of the electrokinetic charge, Q, from the ^-potential,
mixtures of electrolytes cause no problem as long as the Debye-Hiickel
approximation, Eq. (36), is valid. This can be decided by consulting
the work of Loeb et al. (34); for mixtures of the same valence type, the
decision is straightforward and for mixtures of different valence type, the
data for the most highly charged counterion should be inspected. When
Eq. (36) is not valid (high £ and/or high «a), Q can be calculated from £
by means of the tables of Loeb et al. (34) as long as the electrolyte
solution does not contain different valence types; for mixtures of different
valence types, no exact data are available.

B. THE GOUY-CHAPMAN THEORY

The Gouy-Chapman theory is open to a considerable number of criti-
cisms. Briefly stated, the Poisson-Boltzmann equation (7) contains a fun-
damental inconsistency; the dielectric constant decreases in the direction
toward the particle; the small ions do have a finite volume and are often
specifically adsorbed on the particle surface; the surface charge is not
continuous but discrete. A corresponding number of corrections to the
Gouy-Chapman theory have been proposed. They have been reviewed in
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Vol. 1 ( 1 ) and, more recently, by Haydon (6). The question here is how
these corrections affect the theory of electrophoresis.

We shall first consider the relation between the E.M. and the ^-poten-
tial; the relation between £ and the electrokinetic charge will be dis-
cussed at the end of this section.

The fundamental inconsistency, inherent in the use of the complete
Poisson-Boltzmann equation ( 7 ) , was first pointed out by Fowler (47);
further references can be found in Vol. I ( 1 ). The objection is that
the exponential terms in Eq. (7) contain the average potential, <jr, in-
stead of the potential of the average force acting on an ion in the vicinity
of the colloid particle. In other words, when a small ion is brought from
infinity to a certain position in the double layer, the amount of work
done must be corrected, because the ion creates its own "atmosphere"
at that position. For a colloidal double layer in equilibrium (no external
tield) this "self-atmosphere effect" was calculated by, among others,
Loeb (48) and Levine and Bell (49).

Centering the discussion on electrophoresis, we first observe that Eq.
(17) (von Smoluchowski) and Eq. (19) (Hiickel) are not based on any
specific potential distribution and are, therefore, not affected by Fowler's
criticism. Furthermore, Onsager (50) has pointed out that in the linear
equation (8) the use of the average potential, i/>, is theoretically consistent.
For this reason, the electrophoresis theory of Henry (18) , which is based
on Eq. (8), is not open to the objection discussed here. Hence, complica-
tions can be expected only as far as the theory of the relaxation effect
is concerned. In this theory it is assumed that Eq. (7) is valid in the
absence of an external field. Casimir (51) has shown that the incon-
sistency in Eq. (7) is not serious when this equation is used to describe
the potential distribution around a single, highly charged, colloid particle
as long as the concentration of ordinary electrolyte ions is small. This
conclusion is supported by Levine and Bell (49) who consider the self-
atmosphere effect as one of the less important corrections to the Poisson-
Boltzmann equation for a plane double layer. In the theory of the relaxa-
tion effect, another complication arises from the fact that the small ions,
as they move in the external field, are retarded by their own atmospheres.
This additional self-atmosphere effect is ignored by using the limiting
equivalent conductances, A " and A _ " , in Eq. (29). However, from an
approximate calculation by Wiersema (35) it follows that this effect is
negligible in most practical cases and that it is, in addition, to a large
extent canceled by the Brownian motion correction (cf. Section IV,H) .
Recently, the conductivity of strong electrolytes has been treated (52, 53)
by advanced statistical mechanical methods that avoid the inconsistency
connected with Eq. (7) . This type of approach has not yet been applied
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to colloids We conclude that, although no reliable quantitative conclu-
sions are available beyond the Henry region the complications discussed
above can probably be neglected \vithout appreciable error

The dielectric constant in the double layer e, decreases in the direction
toward the particle for two reasons In the first place the molecules of the
liquid are oriented b> the electric held caused by the particle charge (di-
electric saturation) Second the charges of the small ions in the double
layer have a similar effect on the dielectric constant, this effect which is
small compared to the first one, increases in the direction toward the
particle, because the total ionic concentration increases in that direction
Several authors have corrected the Gouy-Chapman theory for these ef-
fects Since their work has been reviewed rather extensivelv b\ Ha\don
(6), we shall give only a few conclusions here

We recall that in the treatment by von Smoluchowski (cf Section III,
A), the assumption that e and 77 are constants is implicit in the derivation
ot Eq (17) A more general expression is

I = l p
X Ar J(

It follows that other things being equal a decrease of e gives a smaller
mobility, for similar reasons the E M is overestimated b> all other the-
ories discussed in Section III

Lijklema and Overbeek ( 1 4 ) have considered the effect ot dielectric
saturation using an equation obtained by Booth (54) The results are
given in Table I From these data it follows that the correction to the
dielectric constant is important only for combinations of high electric po-
tential and high ionic concentration This conclusion is in agreement with
an estimate given by Levine and Bell (49) The over-all correction to the
E M [obtained by carrying out the integiation in Eq (37) (considering
17 to be a constant) and comparing the result with Eq ( I " 7 ) ] is even
smaller because the integral includes those regions of the double laver in
which dielectric saturation is practically negligible, e g , for a concentra-
tion ot 1 X 10~4 N and for it/ = 270 mV, the correction to e is 109r, but
for the same concentration and f = 270 mV, the correction to the E M
is only 1% As a high electrolyte concentration depresses the ^-potential,
the limits given in Table I will not easily be reached, although tor the
high concentrations this is not impossible

The above discussion concerns the primary effect which is alreadv pres-
ent even when only Poisson's equation (13) is involved The theory ot
Henry and the theories of the relaxation effect (25, 27, 36) are subject
to additional corrections because they are also based on a specific po-
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TABLE I
EFFECT OF DIELECTRIC SATURATION ON ELECTROPHORETIC MOBILITY"

Molar concentration

electrolyte.-;

i
10-'
10~2

io-3

ICT4

Dielectric
saturation

of

10% 1%

40 15
94 40

148 94
210 148
270 210

Total correction
on E M

of 1%

25
67

131
201
268

"The second and third column give tho values of the diffuse double layer potential, i/-,
above which the dielectric saturation exceeds 10% and 1%, respectively. The last column
gives the values of the electrokinetic potential, f, at which the dielecüic saturation cor-
rection to the E.M. exceeds 1%. Calculations are based on Eq. (37) with constant value
of tj. (This table is an extended version of Table I occurring in Reference 14; the values of
the potential given in the second column of the latter table correspond to a saturation of
1 %. not 2%.) Values of ̂  and f arc expressed in millivolts.

tential distribution calculated with the assumption of a constant e. How-
ever, as \\as discussed in Section 1I1,D,3, the treatment of electrophoretic
retardation, according to Henry (18), is very insensitive to the potential
distribution that is used. The dielectric constant also occurs in the higher
terms in £ [cf. Eq. (21)] that appear when the relaxation effect is con-
sidered. But accounting for dielectric saturation in those terms would
have only a very minor effect on the E.M. (a correction to a correction).
Hence it is safe to conclude that these secondary effects are negligible.

The finite volume and the specific adsorption of the electrolyte ions
were first considered by Stern (55), whose theory was refined by Grahame
(56) and other workers [cf. Vol. I (1) and Haydon's review article
(6)J.

The finite volume of the ions gives a relatively large correction to the
Poisson-Boltzmann equation. However, this correction does not affect
Eqs. (17) and (19) because no specific potential distribution needs to be
assumed in the derivation of these equations. The same applies to Henry's
result [Eq. (20)] because this result is based upon the linearized Poisson-
Boltzmann equation and because Henry's treatment is not sensitive to
the potential distribution that is used (cf. Section 11I,D,3). Hence, only
the relaxation theory is affected by the volume correction. For a flat double
layer in equilibrium, Levine and Bell (49) conclude that the volume cor-
rection to the potential amounts to 10 to 20% at a surface potential of
100 mV and a 1-1 electrolyte concentration of 0.01 N. We observe that,
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at this concentration, a f-potential of 100 mV is unlikely to occur. Further-
more, the theory of the relaxation effect is based upon integrations which
include the outer regions of the double layer, where the volume effect
is negligible; this tends to diminish the overall correction, as in the case of
dielectric saturation. On the other hand, for a transport phenomenon such
as electrophoresis, the volume eifect may cause additional complications,
which have not been calculated for colloids. We conclude that the volume
effect can be neglected in most cases, except, possibly, for combinations
of high ^-potential and high electrolyte concentrations.

It is generally accepted that most, if not all. the specific adsorption
occurs within the surface of shear. For this reason, the relation between
the E.M. and f is not affected by specific adsorption, although this ad-
sorption may have a profound effect on the value of f itself.

Recently, the disc retenez of the surface charge has received consider-
able attention; we mention here the papers by Levine and Bell (57),
Krylov and Levich (58) , and Buff and Stillinger (59), where other
references can be found. In the electrophoresis theory discussed in Sec-
tion III, the surface charge, a. is defined formally by putting

Iwa-a = Q (3K)

where Q is the electrokinetic charge and a is the distance between the
center of the particle and the surface of shear; a is then assumed contin-
uous. When this continuous distribution is replaced by a discrete one. the
ionic distribution outside the surface of shear may also change. Referring
to the discussion of Section II (cf. Fig. 1), we observe that both k, and k-
are independent of the way in which the particle charge and the atmo-
spheric countercharge are distributed. The electrophoretic force, k:!, is
calculated from the distribution of the countercharge and, therefore,
depends indirectly on the structure of the particle charge. The relaxation
force, k,, is obtained by adding (integrating) all Coulomb forces between
the charge Q and the distorted ionic atmosphere. Hence, the latter force
depends on the distributions of both Q and the atmospheric charge.

However, the discreteness of charge effect is a short-range effect which
is mostly confined to the inner regions of the double layer. It is, therefore,
not unreasonable to assume that the surface of shear remains a surface
of' constant potential and to use the Poisson-Boltzmann equation in the
region outside that surface. As a consequence, in many cases the forces
kn and k., (and hence, the relation between f and the E.M.) will not be
affected much by the discreteness of the particle charge. The discreteness
becomes important when relatively few elementary charges per particle
are present and when the electrolyte concentration is high. In that case,
separate ionic atmospheres are formed around the charged sites, and the
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concept of ^-potential breaks down, with the result that the Gouy-
Chapman model becomes rather unrealistic.

From the preceding discussion we conclude that the effect of the various
corrections is. generally speaking, rather small as far as the relation be-
tween £ and the E.M. is concerned. The most important reason is that.
in the derivation of this relation, one uses only the mobile part of the
double layer, including regions where the corrections are negligible. Yet it
is quite possible that the use of the uncorrected Poisson-Boltzmann equa-
tion in the calculations of Wiersema el al. (32, 35, 36) has caused the
small discrepancies between these calculations and certain experiments
(cf. Section I1I,D,5).

We conclude this section with a few remarks on the relation between
electrokinetic charge and f-potential. This relation is based on

cr = '- gnid ^ (39)
4ir

where ,T is denned by Eq. (38). In Vol. I (1), Eq. (39) has been
worked out for a few specific cases; e.g., for a spherical particle, grad
i// — d\j//dr, where r is the distance from the center of the sphere; when
d\l//dr is calculated from the linearized Poisson-Boltzmann equation (8),
one obtains Eq. (36) of this chapter. Here we emphasize that, in the
right-hand side of Eq. (39), the values of e and grad \f/ at the surface
of shear are to be substituted. At this surface the various corrections to
the Gouy-Chapman model have the highest values attainable in the mo-
bile part of the double layer. Furthermore, we observe that, in order to
work out Eq. (39) it is always necessary to assume a specific potential
distribution, whereas some of the simpler relations between f and the E.M.
are based only on Poisson's equation. It follows that, as far as the Gouy-
Chapman model is concerned, the calculation of Q from £ compares
unfavorably with that of f from the E.M., even when the exact results
of Loeb et al. (34) are used. The effect of the corrections on the rela-
tion between charge and potential has been recently discussed by Hay-
Jon (6) and by Devanathan and Tilak (60). To a certain extent, the
corrections compensate each other. Hence, it is not advisable to apply
)ne or two corrections and to leave out others. As the refinements of the
double-layer theory are still subject to much discussion, we suggest the
jse of the Gouy-Chapman results in cases where accuracy is not too
mportant.

C. THE VISCOELECTRIC EFFECT

As has been mentioned in Section II, it is usually assumed in theories
)f electrophoresis that one or a few molecular layers of liquid adjacent
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to the particle are completely immobilized and that they are separated by
a sharp "surface of shear" from liquid with unchanged viscosity. Pre-
sumably the transition from "infinite" viscosity to normal viscosity is not
quite as sharp as that, but so long as the mechanism that immobilizes
the liquid molecules is not specified, further progress is not possible.
Lijklema and Overbeek (14) have suggested that the strong electric field
in the double layer may be the cause of the increased viscosity. As a
matter of fact, according to Andrade and Dodd (61) the viscosity of a
liquid is increased in an electric field according to

= 170 (40)

Jn Eq. (40), d^i/dx is the electric field strength, 77 and 770 are the viscosi-
ties in the field and without electric field, respectively, and ƒ is the "visco-
elcctric constant," which for a few organic liquids is of the order of 10~12

cm2 volt ~-. The viscoelectric constant of water has not been measured
but on the basis of a theoretical argumentation, Lyklema and Overbeek
(14) suggested it to be of the order of 10~ncm3 volt"-.

Substituting the viscosity as a variable according to Eq. (40) into Eq.
(37) and carrying out the integration (with e constant). Lyklema and
Overbeek found that the viscoelectric effect may have a strong influence
on the E.M. and may immobilize quite a substantial layer of liquid
around the particle; the thickness of this layer varies with the elec-
trolyte content and with the charge of the particle.

However, more recently experimental evidence has been presented by
Hunter and Alexander (62) and by Stigter (63), indicating that the
viscoelectric effect for water may have been strongly overestimated. In
particular. Stigter's work on the viscosity and self-diffusion in solutions
containing micelles of sodium lauryl sulfate indicates that the surface of
shear coincides within 1 A with the surface enveloping the hydrated (one
layer of water molecules) heads of the micellized ions, whereas the esti-
mate of Overbeek and Lijklerna would lead to an immobilized layer of
9 A.

In this situation the most practical approach is not to take the visco-
electric effect into account. But it is obviously desirable to measure the
viscoelectric constant for aqueous solutions and to obtain further evidence
concerning the position of the surface of shear.

D. CONDUCTING PARTICLES AND SURFACE CONDUCTIVITY

The influence of the bulk electric conductivity of the colloid particle
on the E.M. was calculated by Henry (18) for spherical and cylindrical
particles without accounting for the relaxation effect. Henry's conclusions
have been reviewed rather extensively in References 4 and 1. When both
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the particle and the surrounding liquid are electric conductors, the shape
of the electric field in the double layer (and hence, the electrophoretic
retardation) depends on the conductivities of particle and liquid. In par-
ticular, when the two conductivities are equal, the lines of force in the
double layer run straight from anode to cathode. In this case, and for
a spherical particle, Eq. (19) of Hiickel (15) is obtained for any value
of KÜ. When the particle is a much better conductor than is the liquid,
the electric field in the double layer is deformed, but the effect of this
deformation depends on M. For the latter case, Henry (18) calculated
that the E.M. of a spherical particle follows Hiickel's equation (19) in
the region xa < 0.5 and then decreases with increasing value of K.Ü,
reaching zero for *a = 1000. The mathematical difficulties which arise if
one wishes to consider both the relaxation effect and the conductivity of
the particle, were pointed out briefly by Overbeek (24, 25), but this prob-
lem has not been worked out.

Fortunately, there is a strong theoretical argument (24, 25), supported
by experimental evidence, showing that in electrophoresis even metallic
particles can be treated as insulators. Any flow of electricity through
the bulk of a conducting particle would require electrolytic reactions at
the boundary of the particle. From ordinary electrolysis experiments it
is known that such reactions do not occur unless the imposed potential
difference between solid and liquid exceeds a certain value (the polariza-
tion tension) which is of the order of several millivolts. In normal electro-
phoresis experiments, the external field strength does not exceed 10 volts/
cm. In a field of this strength there would be a potential difference of
only l mV across a particle having a diameter of 1 /A. It follows that in
most practical cases the polarization will be sufficient to prevent flow of
electricity through a conducting colloid particle. This conclusion is con-
firmed by experiments of Bull and Söllner (64) on mercury emulsions.
These authors found an E.M. of 3 X 10"' cirr/volt-second in the re-
gion 10 < KCI < 100; if the mercury droplets followed Henry's theory for
conducting particles, the E.M. would certainly be much lower. Henry
(18) quotes one experiment in which the E.M. was found to be zero, but
this concerns a relatively large object (a fine silver fiber at which the
polarization tension was deliberately kept low). We conclude that, as long
as there is no experimental evidence that colloid particles consisting of
conducting material really behave as conductors, the theory for insulating
particles should be applied in these cases.

The concept of surface conductance is discussed by Davies and Rideal
(65). The effect of surface conductance on the E.M. has been treated by
Booth (66) and by Henry (67). The physical assumptions of the two
authors are rather different. According to Booth (66) the surface region
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of the particle itself may have a high conductivity. Henry (67) attributes
the surface conductance to the excess of ions in the double layer. The
mathematical methods and the results of the two authors are similar;
they both find that surface conductance may depress the E.M. consid-
erably. However, in order to avoid confusion it is necessary to observe
that the conductance arising from the region outside the surface of
shear is implicitly accounted for in the treatments of the relaxation effect
by Overbeek (24, 25), by Booth (26. 27), and by Wiersema et al. (32,
35, 36). This is so because the use of local, not bulk concentrations in the
first term of the transport equation (24) implies that the ionic conductiv-
ity in the double layer differs from the bulk conductivity. In other words,
as far as the region outside the surface of shear is concerned, surface
conductance and relaxation effect are two concepts describing the same
phenomenon (7). Up to the present, the latter concept has yielded the
more complete theory; in the treatments by Booth (66) and Henry (67),
interaction between surface conductance and electrophoretic retardation
is neglected and in the results of these calculations the surface conductance
appears as a parameter that is s t i l l to be determined. Hence, generally
speaking, no surface conductance correction should be applied when the
relaxation correction can be calculated or when the latter correction has
been found negligible (e.g., for spherical particles and KÜ « 1 or
Ka» 1).

The latter conclusion would not be valid if there were an appreciable
surface conductance arising from the region inside the suiiace of shear.
As it is improbable that electrons act as charge carriers (see above),
the only remaining mechanism for such a surface conductance is the
movement of adsorbed ions in the inner region of the double layer. In
order to give a contribution to the E.M., these ions would have to mi-
grate across the surface of shear, entering the inner region at one side
of the particle and leaving this region at the other side. Such a mechanism
is not accounted for in the theories of the relaxation effect (25, 27, 36)
since in these theories one of the boundary conditions excludes transport
of ions across the surface of shear. There remains the question whether
this mechanism indeed occurs. Measurement of the surface conductance
is possible (65) but does not distinguish between different types of con-
ductance. In principle, this difficulty could be solved by means of calcula-
tion. The surface conductance arising from the excess ionic concentration
in the diffuse part of the double layer has been calculated by Bikerman
(68) and by Hesselink and Van der Waarde (69). (These calculations
apply to flat double layers and the value of £ must be known in order
to obtain quantitative conclusions from this work.) From the above con-
siderations it follows that, only if the experimental value of the surface
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conductance significantly exceeds the value calculated from excess ionic
concentrations in the diffuse region, one may conclude that a contribu-
tion from the inner region is present. Only in that case it would be ad-
visable to apply, in addition to the relaxation correction, a correction
according to Booth (66) or Henry (67), substituting only the surface
conductance arising from the inner region into the equations of these
authors.

E. DIELECTRIC CONSTANT OF THE PARTICLE

In all theories (3, 15, 18) neglecting the relaxation effect, the dielectric
constant, e,, of the colloid particle does not occur in the basic equations.
In the theories of Overbeek (24, 25), of Booth (26, 27), and of
Wiersema et at. (32, 35, 36), e, appears in one of the boundary condi-
tions which determine the electric potential, A, in the distorted ionic at-
mosphere. Accordingly, the expression for A contains a term that depends
on e;, but Wiersema et al. (32, 35) have shown analytically that this
term does not give a contribution to the E.M.; this result confirms the
conclusions of Overbeek (25) and of Booth (27). Hence, all theories
predict that the E.M. does not depend on the dielectric constant of the
particle. Up to the present, no experimental evidence contradicting this
conclusion has been found.

F. NON RIGID PARTICLES

This section deals with spherical particles having a finite viscosity,
such as emulsion droplets and air bubbles. In this case one must consider
the possibility of motion of the fluid within the particle. When this mo-
tion occurs, the velocity pattern in the surrounding solution is affected;
in particular, the tangential component of this velocity does not vanish
at the interface as it does in the case of a solid particle. As a result, the
Stokes friction will be diminished; the electrophoretic retardation and the
relaxation effect will also be different.

The only detailed theoretical analysis of this problem was given by
Booth (70). Omitting the relaxation effect, he calculated the E.M. of a
fluid sphere of arbitrary electrical conductivity for arbitrary values of K.U,
and for the following three cases: (a) no electric charge within the sphere
(the whole charge is concentrated at the interface); (b) uniform distribu-
tion of charge throughout the sphere; (c) ionic double layer in the sphere.
Of the rather complicated results, only a few limiting cases for noncon-
ducting particles will be reviewed here. For this purpose we represent
the electrophoretic mobility by
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where the effect of the finite viscosity, 17', of the particle is included in
the function G. In case (a) (no charge in the sphere) Booth finds that,
for KCI « 1, G = (617'— 317)7(617'+ 477) and, for Ka » l, G
= 9r/V(67j' -|- 4-rç). With these values of G, and for 77' » 77 (solid par-
ticle), Eq. (41) is reduced to Huckel's equation (19) ( x a « l ) or
to von Smoluchowski's equation (17) (««»!) . These results fur ther
imply that internal motion depresses the E.M. and even that, for KU » 1
and 77' =1 0, the E.M. vanishes. As Booth himself observes, this is not
consistent with the fact that air bubbles show electrophoresis. For case
(b) (uniform charge in the sphere) and KÜ « 1, the function G in Eq.
(41) was found to equal (37/-f-3T7)/(37i '4-277) (giving a positive
correction to the Hiickel equation); for case (b) and KCI » 1, Booth's
equation does not give a finite limiting value for the E.M. For case (c)
(ionic double layer in the particle). Booth's result depends, in addition,
on the thickness of t h i s double layer; when the inner double layer is rel-
atively thick, the result is reduced to that of case (b).

The internal circulation correction was also discussed by Jordan and
Taylor (71) for the case in which no charge is present within the sphere.
Their calculation is based on the fact that, because of internal motion,
the Stokes friction is decreased (72) by a factor of (317'4-217)/(3?}'
-f- STJ). Assuming that the E.M. is increased by the reciprocal of this
factor, Jordan and Taylor obtain, for a nonconducting particle,

U =f-g+%L fi(Ka] (42)
X (>7T77 ori + 27?

where /i(*a) is Henry's function as given in our notation [cf. Eq. (20)
and the discussion following that equation]. Equation (42), giving a
positive correction to the E.M., contradicts Booth's result for case (a).
We observe that Jordan and Taylor's result does not account for the in-
fluence of internal motion on the electrophoretic retardation and on the
relaxation effect.

It follows that the theoretical work on this subject is rather unsatisfac-
tory. Turning to experimental evidence, we mention that Taylor and
Wood (73), on the basis of E.M. measurements on droplets of different
viscosities, decide in favor of Eq. (42). However, other experiments
strongly suggest that in many cases internal circulation does not occur at
all. Linton and Sutherland (74) studied macroscopic drops (diameters of
several millimeters) of various organic substances rising or falling in
water. By means of direct observation of the drops they found that in-
ternal circulation can be prevented by the presence of very small amounts
of interfacially active impurities and that the effect of these impurities
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increases with increasing interfacial tension between the two pure liquids
and with decreasing size of the drops. (Their explanation is that transfer
of momentum across the interface is opposed by differences in surface
pressure that are produced when surface-active material is present.) From
these experiments one would predict that a small emulsion droplet con-
sisting of a nonpolar substance (high interfacial tension) and stabilized
by a surfactant, behaves as a solid sphere. This is confirmed by experi-
ments of Anderson (75), who measured the E.M. of «-octadecane dis-
persions in solutions of sodium dodecyl sulfate at a series of temperatures
above and below the melting point of the octadecane. This author
found that any correction for internal motion above the melting point
would be inconsistent with his observations, which also included measure-
ment of the adsorption of the surfactant as a function of temperature.
Recently, Hollîngshead et al. (76) found that the E.M. of octadecanol
droplets is strongly dependent on the purity of the materials and the way
of preparation of the electrophoresis cell. These authors also review
E.M. measurements on similar systems by previous workers and suggest
that discrepancies between the results may be caused by impurities. One
might conclude here that the discrepancies are related to variations in the
extent of internal circulation. However, acording to Hollingshead et al.
the materials used in previous measurements had probably been so im-
pure that internal motioi, had been practically absent.

In our opinion the situation could be clarified a great deal by further
experiments, similar to those quoted above. In the meantime, the best
approach is to treat fluid drops as solid spheres in cases where the experi-
ments of Linton and Sutherland (74) suggest that internal motion is ab-
sent. This certainly includes many important systems, such as oil in water
emulsions stabilized by surfactants and oil droplets covered by proteins or
other materials of biological interest.

The above discussion applies to nonconducting particles. Fluid spheres
consisting of electrically conducting material (e.g., mercury droplets) ex-
hibit a rather extraordinary phenomenon that was discussed by Frumkin
(77). This author has shown theoretically that when a conducting droplet
in water is subjected to an external dc field, internal circulation occurs.
The main cause of this motion is not transfer of momentum across the
interface, but consists of electrical forces acting in different directions in
different parts of the drop. These forces are present when the particle
is polarized (cf. Section 1V,D). As a result of the internal circulation the
particle is propagated with a velocity that may exceed the normal electro-
phoretic velocity by several orders of magnitude. Such velocities have,
indeed, been observed (77).
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G. NONSPHERICAL PARTICLES

This subject is of interest because many colloidal particles do not have a
spherical shape. Obviously, any other particle shape makes the calculation
of the electrophoretic retardation and of the relaxation effect more com-
plicated. In addition, the electrophoretic velocity of a nonspherical particle
depends, generally speaking, on the orientation of the particle with re-
spect to the direction of the external dc field. Hence it is not surprising
that the theory for these particles is very incomplete.

A notable exception occurs when the particle is insulating (cf . Section
IV,D) and when the thickness, I/K, of the electric double layer is small
compared with the radius of curvature of any point of the particle surface.
For this case, the calculation of von Smolucbowski (3) is valid irrespec-
tive of the form of the particle (cf. Section III ,A). Furthermore. Overbeek
(30) has shown that, for any particle shape, the relaxation effect can be
neglected when the double layer is thin compared to any radius of curva-
ture. Hence, m this limiting case, von Smoluchowski's equation ( 1 7 ) can
be applied to all particle shapes, and the E.M. does not depend on the
orientation of the particle.

Henry (18) has calculated the E.M. of a circular cylinder of infinite
length, without considering the relaxation effect. For a cylinder aligned
parallel to the external field, he found that Eq. (17) is valid for arbitrary
values of Kb, where b is the radius of the cylinder, and for arbitrary con-
ductivity of the cylinder. For a nonconducting cylinder with its axis per-
pendicular to the field, Henry obtained the relation

(43)

In the limit Kb » 1, F(«.b) = 4 and Eq. (43) is reduced to Eq. ( 1 7 ) . For
«b« 1, F(«b) = 8 and

X--Ä
For intermediate values of Kb, the function F(*Z>) was evaluated graph-
ically from Henry's result by Abramson et al. (78), who used the solution
of the linear Poisson-Boltzmann equation (8) for cylindrical symmetry.
The results have been reviewed by Abramson et al. (79) and by Over-
beck (4). Some values of F (Kb) are given in Table II.

For the application of these results to practical cases (rod-like particles),
the orientation of the particles must be considered. If, under the condi-
tions of electrophoresis, there would be an appreciable preference for a
special orientation (because of electric dipole moments of the particles



1. INTERPRETATION Ob ELF.C I ROPHORETIC MOBILITIES 35

TABLE II
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or for hydrodynamic reasons), the extent of this orientation would in-
crease with the strength, X, of the external field. In that case, the electro-
phoretic mobility, U/X, would depend on X. Because, at the moderate
field strengths used in eiectrophoresis, this is not observed, it is safe to
assume that the particles are randomly oriented. Abramson et al. (79)
accounted for this random distribution in an approximate way by assum-
ing that one-third of the particles are oriented along the direction of the
field and two-thirds along directions perpendicular to the field. Their re-
sult can be expressed as

x -
where

This method of calculating the function B (i.e., by averaging reciprocal
mobilities rather than mobilities) seems somewhat arbitrary. By taking
weighted averages of the mobilities themselves, according to Eq. (47)

(47)I ï — tï I « l / > / 7 \ l V T * ƒB 3 l_4 r (KO) J

we obtain different results, but the relative difference does not exceed
1290, as can be seen by comparing the third and fourth columns of
Table II.

It is of interest to compare the above results with Henry's equation
(20) for a spherical particle. As an example, let us consider a cylinder
of finite length /, taking / = 20b. The volume of this cylinder is 20wb3.
The radius, a. of a sphere having the same volume equals 2.476. From
inspection of Eqs. (20) and (45) it follows that the function B(KO)
[Eq. (46) or (47)] should be compared with the function 6//i(xa),
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thé relation between the arguments of B and /i being KÜ = 2,47x6.
Values of the function 6//i (2.47x6) are given in the last column of
Table II. It follows that, according to Eqs. (20) and (45) to (47), the
difference between the E.M. of a randomly oriented cylinder and that
of a sphere of equal volume is rather small, especially when Eq. (47)
is used. This leads to the tentative conclusion that, as long as the relaxa-
tion effect can be neglected, deviations from the spherical shape have
little influence on the relation between the E.M. and f.

For particle shapes other than spheres or cylinders, no specific calcula-
tions of the E.M. have been carried out. Furthermore, the relaxation ef-
fect has not been calculated for nonspherical particles, except for an ap-
proximate treatment of polyelectrolyte coils (cf. Section V,C). However,
as mentioned above, the relaxation effect is negligible for relatively thin
double layers of any shape. Generalizing the conclusions for spherical
particles, we may further assume that the relaxation effect can be neg-
lected when the dimensions of the particle are small with respect to I/K
(for arbitrary values of f ) and when z_f < 50 mV (for arbitrary values
of K', z- is the valence of the counterions).

For a cylindrical particle, the relation between the electrokinetic
charge, Q, and f has been calculated by Abramson et al. (78. 79) and
by Dube (80). In our notation, the result can be expressed as

Q = y2e^l[Kb K,(Kb)/K^b)} (48)
Equation (48) applies when / »£ and the charge on the ends of the
cylinder is neglected; Ki(i<b) and K->(icb) are Bessel functions of Kb;
a few values of these functions are tabulated by Abramson et al. (79).
It is based on the linear Poisson-Boltzmann equation (8) and is, there-
fore, valid only for et,/kT « 1 ; furthermore, by analogy with the spherical
case (cf. Reference 34), it can be expected to give the best results when
ab is small.

For Kb >>> 1, and, more generally, for particles of any shape sur-
rounded by a relatively thin double layer, the charge can be calculated
from the solution of the complete Poisson-Boltzmann equation (7) for a
flat surface (1). For a sphere of radius a, Loeb et al. (34) found that
the relative difference between values of Q calculated from the exact
(spherical) solution and from the flat plate approximation is about 5%
for «.a = 20 and eC/kT = I ; at constant KÛ, this difference was found to
decrease with increasing ^-potential. Generalizing this result to nonspher-
ical particles we conclude that the flat plate approximation will be a rea-
sonable one when I/K does not exceed 1/20 of the radius of curvature
of the surface.

For a rigid cylindrical particle in a solution containing only its counter-
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ions, the complete Poisson-Boltzmann equation (6) can be solved an-
alytically. Results are given by Alfrey et al. (81) and by Fuoss et al.
(82).

H. BROWNIAN MOVEMENT

It is a well-known fact that, in electrophoresis, the motion of the col-
loid particle in the direction of the dc field is superimposed on its Brown-
ian movement. In E.M. measurements, the effect of this random motion
is eliminated either by taking averages over a large number of measure-
ments (microscope electrophoresis) or because the combined movements
of a large number of particles are observed (moving boundary methods).
Since all theoretical equations give the superimposed velocity caused by
the field, they are directly related to the observed E.M. In this connection,
Brownian movement offers no problem.

However in the theory one must consider the fact that the colloid par-
ticle, by its Brownian motion, takes part in the relaxation of its ionic at-
mosphere. This diminishes the relaxation effect and gives a positive cor-
rection to the E.M. This correction is included in the theory of electrolytic
conductance (83, 84) but not in the electrophoresis equations given in
this chapter. It can be disregarded whenever the relaxation effect is negli-
gible.

For a spherical particle in a 1-1 electrolyte, an approximate computa-
tion of the upper limit of the Brownian motion correction was carried
out by Wiersema (35). The results were reviewed by Wiersema et al.
(36) and can be expressed

0 < A/J'< + «>/o3(/±)/(j± + .fo) (49)

In this equation, \E' is the Brownian motion correction to the E.M.,
expressed in dimensionless units [cf. Eq. (27)]; y0 = e£/kT; /± are
the friction coefficients (assumed to be equal to each other) of the small
ions, and jc is the friction coefficient of the particle; « is a function of
KO, of which the following values are known: KÜ = 0, a = 0; «a —0.1,
a = 0.004; KÜ = \, a = 0.018; x.a ~ 5, a = 0.030. We observe that a large
value of K(i implies either a large particle radius or a large ionic strength.
In the first case, /i/(/-t+/,.) is small; in the latter case, it is unlikely
that y» has a large value. It follows that the Brownian motion cor-
rection is negligible in most practical cases. Moreover it was found (35)
that A£' is canceled to a large extent by the self-atmosphere effect (cf.
Section IV,B) which slightly diminishes the mobility of the small ions,
and, hence, that of the particle. Therefore, and because Wiersema's calcu-
lation gives only the upper limit of \E', the best one can do at present is to
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neglect the Brownian motion correction as well as the self-atmosphere
effect.

I. EFFECT OF NONLINEAR TERMS

In the theory presented in Section III, two approximations have been
made that will be briefly discussed here. First, the Navier-Stokes equation
(25), given in Section 111,C is, strictly speaking, incomplete because the
sum of the forces on the left-hand side is, in fact, equal to the mass times
the acceleration of a volume element of the liquid (the so-called "inertia"
term). When this term is included, the theoretical E.M. will contain terms
that are nonlinear in the field strength. The second approximation per-
tains to the relaxation effect. When the deformation of the ionic at-
mosphere is accounted for, all terms of Eq. (24) and the last term of
the left-hand side of Eq. (25) contain contributions that are also non-
linear in the field strength. These contributions were omitted in the calcu-
lations of Overbeek (24, 25), of Booth (27), and of Wiersema et al
(32, 35).

The effect of the inertia term on the E.M. of a sphere was calcu-
lated by Booth (85), who found that the correction amounts to 10%
for £ = 200 mV and Xa = 200 volts; for a sphere with a radius of
10"'cm, this value of Xa corresponds to a field strength of 2 X 10"
volts/cm. A similar result was found recently by Friedman (86) for
small ions. The influence of nonlinear terms on the relaxation effect has
not been investigated for colloid systems, but from theoretical and experi-
mental work on the Wien effect in electrolyte solutions [cf. Harned and
Owen (87)] it is known that these terms are completely negligible at
field strengths below 10:! volts/cm.

Since in ordinary electrophoresis experiments the field strength does
not exceed 10 volts/cm, it is clear that neglect of all nonlinear terms is
completely justified. Of course, this also follows from the fact that devia-
tions of Ohm's law are not observed in colloidal solutions at moderate field
strengths.

J. EFFECT OF COLLOID CONCENTRATION

Strictly speaking, all theories discussed above can be applied only in
the limiting case of infinitely small colloid concentration. When this con-
centration is not small, various complications can be expected. First, when
the combined volume of the migrating colloid particles is appreciable,
the effect of backflow of the solvent cannot be neglected. This flow causes
a decrease in the observed E.M. From their measurements on soap mi-
celles, Stigter and Mysels (44) concluded that this effect is responsible
for a large part of the concentration dependence. Further complications
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may arise from interactions between the colloid particles. A discussion
of these effects was given by Abramson et al. (79). When the concentra-
tion of particles is so high that their ionic atmospheres overlap, the elec-
tric repulsion affects the E.M. These interactions are most likely to occur
at low ionic strength, and especially in polyelectrolyte solutions containing
only counterions. Hydrodynamic interaction is present when the distur-
bance of the solvent created by a moving colloid particle extends as far
as the locations of neighboring particles. These interactions have a com-
paratively long range because the hydrodynamic disturbance is inversely
proportional to the distance from the particle (86), whereas the double
layer potential, \j/, decreases exponentially with this distance.

Since, at present, our theoretical understanding of these complications
is very insufficient, the only practical approach to a quantitative inter-
pretation of observed E.M. values is to extrapolate these values to zero
colloid concentration, or at least to make sure that one measures in a
region where the E.M. does not depend significantly on this concentration.
For the case of soap micelles, the extrapolation procedure is discussed
by Stigter and Mysels (44). The case of polyelectrolytes with or without
added salt has been discussed by Möller et al. (88).

K. CONCLUSIONS

From the discussion given in this section we conclude that the simple
model of Section III has a wider range of applicability than one might
expect. One of the reasons is that some of the complications are quite
negligible (Brownian movement, nonlinear terms) or can be often avoided
experimentally without much trouble (mixtures of electrolytes, colloid
concentration). In other cases, complications are diminished by the na-
ture of the systems (interfacial properties preventing transfer of electric
charge or momentum across the interface, random orientation causing
elongated particles to behave rather like spheres).

Nevertheless, the present state of the theory leaves a number of things
to be desired. As outstanding examples we mention the absence of re-
laxation theories for more complicated systems (see also Section V), the
difficulties concerning the inner region of the double layer (which make
the calculation of charge from ^-potential rather hazardous) and un-
certainty about the viscoelectric effect. Further experiments would prob-
ably make clearer what sort of theoretical developments are most needed.
In this connection we should like to mention again that not much progress
can be made by applying one or two corrections to the theory while neg-
lecting others that can be expected to be of the same order of magnitude.
In such cases it may be better to use the simple theory while keeping in
mind that the results are semiquantitative.
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V. Electrophoresis of Polyelectrolytes

A. INTRODUCTION

J n many cases the objects of electrophorcsis research will be natural
or synthetic polyelet rolytcs. Quite often the model of rigid, nonconducting
spherical particles with a uniformly distributed surface charge will be
unrealistic, and the concept of f-potential, which applies well to metal,
silver halide, or oil particles in electrolyte solutions, loses much of its
usefulness. But an analysis in terms of the four forces, k,, k2, k ;>, and k ( ,
such as we have used in Section II as the basis of all further calculations,
remains also valid for polyelectrolytes, as does the fact that, compared to
the three other forces, k,, the relaxation effect, produces terms of higher
order in the charge density or the surface potential.

The aim of the determination of the E.M. will often be the calculation
of an "electrokinetic charge," in order to compare it with an "analytical
charge." If the two are different, some conclusion may be drawn about
the location of the surface of shear, or about specific adsorption of ions.
More generally, the aim of electrophoresis research may be to under-
stand the E.M. as a function of the degree of dissociation, a, of the poly-
electrolyte, the ionic strength, I, and the types of electrolyte used, in
terms of the assumed structure of the polyelectrolyte ions. Tn this section
we shall first consider the electrophoresis of proteins, then deal with
synthetic linear polyelectrolytes of the polyacrylic acid type, and finally
say a few words about nucleic acids. Section V,E of this chapter will indi-
cate an empirical method to determine the relaxation effect, which can
be used in cases where the theoretical calculation is not (yet) possible.

B. PROTEINS

Frictional behavior of protein molecules has often been interpreted in
terms of hydrated ellipsoids of revolution. [For a survey of methods and
the relevant equations, cf. Scheraga (89).] Although the available data
are frequently not accurate and not extensive enough to allow very precise
conclusions, it seems fair to state that native protein molecules are only
moderately hydrated (usually less than 0.5 gm of water per gram of pro-
tein) and that many of these hydrated molecules are not very asymmetric
(axial ratio less than 1 : 5). As long as specific indications to the con-
trary are absent it seems reasonable to interpret electrophoresis data by
assuming the molecules to be massive particles, with known friction
constant (e.g., from diffusion or sedimentation data) and a shape not too
far away from the spherical. As the protein charge is usually low, and
electrophoresis is carried out at relatively high ionic strength, the £-
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potential of such a particle can be expected to be low. Consequently the
relaxation effect is not very important, but the electrophoretic retardation
(k3) should not be neglected.

The most obvious interpretation of the E.M. of proteins is, therefore,
based on Henry's electrophoresis equation fsee Section Ilf,D,2; Eq.
(32)] or, if the relaxation effect should not be quite negligible, on Over-
beek's equations (33, 34). If it is known that the particles deviate strongly
from the spherical shape, the equations (45) to (47) for randomly
oriented cylinders as discussed in Section IV,G can be used, provided the
relaxation effect is small. If a substantial influence of relaxation is ex-
pected, it is better to use the theory for spherical particles with relaxa-
tion. This is all the more justified since, without relaxation, the mobilities
of cylinders and of spheres of equal volumes are nearly equal (cf. Section
1V,G, Table II).

These interpretations lead to values of the ^-potential which can
further be converted into electrophoretic charges, as indicated in the end
of Section III,D,5 for spherical particles. For extremely elongated particles
the calculations of Abramson et al. (78, 79) and of Dube (80) for
cylinders may be used although their validity is restricted to low po-
tentials. For thin double layers (20A < main radius of curvature) the
relation between charge and potential for flat plates will be the best ap-
proximation (cf. Section 1V,G).

Interpretations of protein molecules on this basis lead to electrokinetic
charges which are of the same order of magnitude as the titrated charge
(binding of H+ and OH - ions), show a similar dependence on pH and
on ionic strength, but are in general somewhat lower than the titrated
charge. A number of examples are cited by Brown and Timasheff (90).
[Cf. also Overbeek (91).]

The difference between electrokinetic charge and titrated charge can
be explained qualitatively by binding of ions other than HT or OH~ and
by assuming that a part of the counterions is located within the surface
of shear, with the result that the electrokinetic charge is diminished. A
more quantitative analysis in this direction, especially with variation of
ionic strength, might be rewarding. It could lead to information about
the location of the surface of shear and this should be consistent with
data on friction constants derived from sedimentation, diffusion, and
viscosity.

That ion binding occurs in many cases, shows up clearly in the shift
of the isolectric point with ionic strength (cf. Reference 90). At the
isoelectric point the interpretation of electrophoresis is very simple,
indeed, because U = 0 implies £ = 0 and 2 = 0, independent of the shape
of the particle. A shift of the isoelectric point with ionic strength can
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onl> be understood it ions art adsorbed by the protein molecules
Jt has been suggested by several authors that the E M of a particle

w i t h a rough surface can be described with the usual electrophoresis equa-
tions simply by using for the value of the radius m the equations the
radius of curvature of the bumps and extensions, rather than the o\erall
radius of the particle Examples are the statement by Abramson (92)
that tor certain proteins "it seems necessary that («a) remains unchanged
each molecule taking its own (KU) along with it" on adsorption on par-
ticles of a much larger size It had been found that the E M of these
proteins did not change on adsorption but the overall radius had ob-
viously been increased greatly and at the given ionic strength this should
have increased the mobility appreciably

In a similar way Bnnton and Lauffer (93) suggest that the mobilit}
of flagellated bacteria or of erythroc^tes, should be interpreted b} using
the radii of the flagellae or of the surface roughness of the erythrocytes
rather than the virtually infinite radn (compared with I / « ) ot the bac-
teria or erytftroc\tes as a whole

In general one should expect, of course that a rough surface has a
larger friction and thus needs a higher charge than does a smooth surface
m order to produce the same mobility and qualitativ elv the assumption
ot a small radius of curvature works in the right direction Quantitatneh
however, the picture is not consistent It neglects the contribution of the
large particle to the over-all friction and also neglects the overlap of the
double layers on the flagellae, the individual bumpa on a rough surface
etc which should lead to an increase of the effective electrophoretic
radius with decreasing ionic strength

Moreoxer, in a recent careful reappraisal of data or electrophoresis of
large particles covered by proteins Bull et al (94, 95) conclude that m
this case the effective radius is virtually infinite, rather than corresponding
to the radius of the native protein molecule The relatively low charge
corresponding to this large radius is explained b\ assuming that part
of the charge of the adsorbed protein is neutralized on the substrate and
not available as electrokmetic charge

C RANDOM Cou Poi Y E L E C I R O I YIÊ .S

To interpret the electrophoresis of randomly coiled pohelectrol^tes
such as polyacrylate or gum arabic in terms of a hard impermeable
sphere is completely unrealistic Hermans and Fujita (96) and CKerbeek
and Stigter (97) have treated the electrophoresis of an open coil taking
into account that a part ot the countenons is inside the coil region and
that these ions are mobile in the electric held, but omitting the relaxation
effect Longworth and Hermans (98) have given an approximate treat-
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ment of the relaxation effect, essentially based on the deformation of the
applied electric field, resulting from the difference in conductivity inside
and outside the coil.

Jn all these treatments the polymer is considered as a uniform distribu-
tion of segments or monomers in a spherical region of radius R, and the
small ions are supposed to be distributed inside and outside this sphere
in accordance with the linear approximation of the Poisson-Boltzmann
equation. Thus the total charge Ze of the polyelectrolyte molecule is sup-
posed to be neutralized by a charge — ZMe outside the coil and by a
charge — (Z —Z,. f f)e inside the coil. For a calculation of Zftfe, cf. Ref-
erences 99-101. The liquid inside the coil is assumed to have the same
viscosity as the bulk liquid. It is entrained by the electric force acting
on the countercharge inside the coil and in its turn entrains the coil by
hydrodynamic forces on the individual segments of the coil that are con-
sidered as particles with a friction constant ƒ. This treatment is similar
to the calculation of the friction constant F of the whole coil in diffusion
or sedimentation as given by Debye and Bueche (102) and by Brinkman
(103).

The final electrophoresis equation as obtained by Overbeek and Stigter

U Z - Zn, . Z.K Z.,. «R
v = VF - (' -^ fr t' — :. i, -,—,—pfX A ƒ r ()7T?7/i l + K n

in which N is the number of segments per coil, and F is given by Debye
and Bueche's expression

, , _ _ ! ) 1 — tanh <r a ,T, ,„,
= 2(^r+~(.r2ff-T(ï"^~TânW-V) -; ( j

with
0-2 = 3-Vf 4TT1)R

Expression (50) is slightly less correct than the expression obtained by
Hermans and Fujita, but in practice the differences are quite small and
expression (50) has the advantage that the different terms can be inter-
preted separately. The first term on the right-hand side of Eq. (50) repre-
sents the combined effect of the countercharge inside the coil plus an
equivalent part of the charge on the coil segments. The second term
would give the motion of the coil if it had just an effective charge of
Zf.ffC and nothing else, and the third term represents the eleetrophoretic
retardation caused by the countercharge outside the coil. Figure 7 gives
a good idea of the mobility as influenced by KR and by the ratio
6ir7jR !'Nj. This last ratio is a measure of the degree of free drainage
of the coil. If it is small, drainage is negligible and the coil behaves as a
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il .M?
X ' Ze

Fie 7. Electrophoretic mobility of spherical coil for various degrees of drainage.

hard impermeable sphere with a charge equal to Z^e. In that case the
first term on the right-hand side of Eq. (50) can be neglected, F becomes
equal to 6-rrriR, and the last two terms of Eq. (50) are equivalent to the
combination of Eqs. (19) and (36), i.e.. reduce to the Hiickel case (no
relaxation, no deformation of the applied field). If OTrrjR/Nf becomes ver}'
large, the drainage is virtually complete, the electrophoretic retardation
becomes negligible and the electrophoretic mobility approaches

U/X = Ze'Nf (52)

The above model ceases to be realistic when the double layers are com-
pressed to such an extent that they screen the individual charged sites
of the particle effectively from one another. In those circumstances the
E.M. would decrease below the limit Ze/Nf shown in Fig. 7 and, with
increasing electrolyte content, finally go to zero as a limit. This would
occur when I /K is of the same order as a, the "radius" of the charge-
carrying group. In a schematic way Fig. 8 shows two different curves of
electrophoresis against K, one for relatively large radius (a\ ) and OIK
for relatively small radius («j).

No quantitative calculations have been made for this case, but the elec-
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trophorcMS of a cylinder might be a useful approximation. Figure 9 shows
how a polymer coil surrounded by a highly condensed double layer can
be considered as a combination of randomly oriented cylinders. One of
the obvious consequences of this model is that the E.M. becomes inde-
pendent of molar mass.

ZeX
Nf

permeable sphere, eq(5O)

F jo. 8. Schematic electrophoresis curves for a permeable sphere and for poly-
electrohte coils with individual charged segments; fli and a. 'are. the radii of the
segments

FIG. 9. Schematic picture of coiled polyelectrolyte with compact double layer.

The omission of the relaxation effect forms a serious drawback to
most calculations of the electrophoresis of coiled polyelectrolytes. This
might not be too bad for low electrolyte content and low charge density,
but for high electrolyte content the effect may be important. In Section
V,E, we shall discuss a direct experimental determination of the relaxa-
tion effect which may help to solve this difficulty.

A striking feature in most experiments on electrophoresis and con-
ductance of polyelectrolytes is the fact that the influence of molar mass
is so small. This was found already in Kern's early experiments (104),
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and was later confirmed by many others. Schindewolf (105, 106) showed
with polyphosphates that, for very small molar mass, the influence of
molar mass is strong, but that it levels off soon.

The independence of molar mass is in agreement with the model of a
freely drained coil, but also with any model in which the E.M. is gov-
erned by the local situation around the charged site. On this same basis,
one would expect the E.M. to be proportional to the charge of the poly-
mer (at constant molar mass). In practice, however, the dependence
on the charge is much less pronounced. Explanations that have been of-
fered for this effect are:

1. At lower charge density the coil contracts and its friction diminishes.
This explanation, however, is difficult to reconcile with the virtual inde-
pendence of molar mass.

2. Counterions are bound to the coil at the higher charge densities.
3. The size of an elementary segment depends on the charge on the

chain. It corresponds to that section of the chain that carries one charged
group and its friction can be described as that of a prolate ellipsoid with
a diameter independent of its length. This hypothesis was formulated by
Noda et al. (107) and applied with considerable success to data on the
E.M. of sodium polyacrylates in 0.1 M NaCl. They calculate 6 A as the
diameter of the ellipsoid (sphere in case of the monomer of a fully
charged polymer) from electrophoresis data—a very reasonable value
compared to the actual size of the monomer.

D. NUCLEIC ACIDS

Since nucleic acids are highly charged and rather stiff in the native
state, their electrophoresis can probably best be described by the randomly
oriented cylinder model (108, 109). After denaturation they may coil
up and then might be more suitably described as random coils. So far
very little work has been done on quantitative interpretations of nucleic
acid mobility.

E. EMPIRICAL DETERMINATION OF THE RELAXATION EFFECT

Just as with ordinary electrolytes, some information on the relaxation
effect can be obtained from measurements at high frequency (Debye-
Falkenhagen effect) or high field strength (Wien effect). The low-fre-
quency dielectric constant is also, in part, determined by the asymmetry
of the double layer. Unfortunately none of these methods is easy to ex-
ploit. The Wien effect gives a mixture of relaxation with part of the elec-
trophoretic retardation. The low-frequency dielectric constant contains
dipole contributions next to the relaxation effect, and only if the time of
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relaxation of the dipolc oricntution is sufficiently different from that of the
double layer, dielectric constant or dielectric loss measurements would
give a direct access to the relaxation effect. Moreover, in all these cases
the low molecular weight electrolytes also make a contribution, and sep-
aration of this effect from that due to the polyeieetrolyte is not simple.
Nevertheless it is felt that more work both theoretical and experimental
in this direction would be useful. We want to mention papers by Schwarz
( 1 1 0 ) and by Schurr ( 1 1 1 ) on the dielectric dispersion of spherical par-
ticles in electrolyte solution, where earlier literature is cited.

Möller et al. (88) have shown that in favorable cases the influence
of relaxation can be calculated from transference data. The general idea
on which this method is based is as follows. The electrophoretic retarda-
tion results from the hydrodynamic pattern around the particle. It is
caused by the action of the applied field on the surface charge and on the
space charges, but it is independent of the nature and the mobility of the
counterions. The relaxation effect, on the contrary, results from a lowering
of the field acting on the particle and on the counterions and it will
decrease the velocity of an ion with a high mobility much more than thai
of an ion with a low mobility. Consequently, the two effects can be
separated by measuring conductivity and transference, using the same
polyion with counterions of different mobilities.

If counterions are used that are not specifically adsorbed and if the
total electrolyte content is low, the space-charge distribution and, there-
fore, the electrophoretic retardation should be independent of the counter-
ions used. The deformation of the field, and thus the relaxation effect,
described as a lowering of the held strength by an amount X , l l a x , which
has the opposite direction of the applied field X, are also nearly independ-
ent of the ionic mobility (see Section III,D,3).

It is also confirmed experimentally that the mobilities of the polyion
are independent of the choice of the counterion. See Strauss and Ross
(112) for polyphosphates and Möller et al. (88) for bovine serum
albumin.

Therefore, if we consider a negatively charged colloid particle and
counterions which are in one case Li+ and in the other, K + (thus with
rather widely differing mobilities), we expect the velocity of the particle
to be

u,.,.,.., = (Uv« ..... - u, i.. „„,,„) i - J-- r.-,3i

where UVntn-io is the velocity in the field X in the absence of any
retarding effects, U,,,,.,.,,.,,,,,, is the electrophoretic retardation, and X,.,.,,,,
the relaxation field, both independent of the type of counterion.
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For the velocity of the counterions we may expect

\
(54)

1 J\.

U,, = (UÏ., - ULi ., ,„„„„) ( I - ~~~) (55)

where the symbols have meanings analogous to those used in Eq. (53).
The X,.,,|ilx is the same for the colloid particle and the counterion, be-
cause the relaxation effect is based on a force of interaction between
the particle and an electrically equivalent amount of counterions, so that
it must obey Newton's principle that action equals reaction. On the other
hand, the electrophoretic retardations for the two types of counterions
are the same, because the two ions are in the same field of flow. But the
electrophoretic retardation for the ions may be, and in general is, dif-
ferent from that for the particle.

Subtraction of Eqs. (54) and (55) leads to

_ _ _
~ X ~ U » - U».A *••> l

and, consequently, a measurement of the mobility of the counterions may
lead to an empirical estimate of the relaxation effect.

Since the mobility of the polyion is independent of the choice of the
counterion, the difference between the mobilities of the cations is pro-
portional to the difference of the equivalent conductances of the poly-
salts. Consequently, Eq. (56) may be written

- - Y — 0 , „
X AA, — ALi

The fact that the right-hand side of Eq. (57) is independent of the choice
of the cations was demonstrated by Eisenberg (113) for polymethacrylic
acid. In this equation A/i-_,)(,l3 is the equivalent conductance of the po-
tassium salt of the polyion, and AA-° the limiting ion conductance of the
K+ ion at infinite dilution.

The above considerations are most straightforward for solutions of a
pure polysalt without added low molecular weight electrolyte. In the
presence of salt the situation is more complicated, since both counterions
and co-ions are involved in the relaxation effect, but, since the counter-
ions are drawn toward the polyion and the co-ions are pushed away,
the main effect is due to the counterions in the neighborhood of the
polyion.

Assuming that the total conductance of such a solution can be split



1. I N T E R P R E T A T I O N OF ELECTROPHORETIC MOBILITIES 49

up in the conductance of the supporting solution (containing all co-ions
and an equivalent amount of counterions, with mobilities they would
have in a colloid free solution of the same concentration) and the poly-
salt, then the above equations should be applied to the contribution of the
poiysalt to the conductance and lead to acceptable values of the relaxa-
tion correction. In the measurements by Möller et al. (88) the calculated
relaxation correction, X,.,,i.,x/X, for bovine serum albumin varied be-
tween 2 and 15%, depending on the charge on the particles, their con-
centration, and the concentration of the supporting electrolyte. The agree-
ment with calculated values (see Table III) of the relaxation effect for

TABLE III
RHAXAIION EFFI c i FOR BOVINE SFRUM ALBUMIN"

Klemenfarv
( barges per

protein
molecule

10 83
10 83
10 83
22 1
22 1
22 1
22 1

01

0 50
0 22
0.10
1 0
0 5
0 25
0 178

{"-potential
i'inV)

30
H 4
17 5
47
()9
87
<)4

X
[Kq. (57)

0 93
0 !I5
0 97
0 88
0 88
0.90
0 93

Relaxation
retardation

ot rigid
sphere'

0 95
0 !)7
0 98
0 05
0 90
0 92
0 ill

" Comparison between relaxation efiect calculated from experiments on Li and K salts
of bovine serum albumin and relaxation eifert calculated for a rigid sphere (radiut,
a, = 34 5 A) of the same charge. The charge was obtained by adding LiOH or KOH
to iso-ionic bovine serum albumin. The f-poteutial was calculated from the charge a.i-
Kuming complete absence of ion binding.

6 Calculated as discussed in Section III of text.

rigid spheres as described in Section ill is not perfect, but good enough
to make this an attractive method to obtain an estimate of the influence
of relaxation on conductance and electrophoresis. Especially in the case
of coiled polyelectrolytes, where a complete theory is missing, this is a
valuable asset.
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