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§ 1. Introduction
The weight of the colloidal particles is an important factor in the

interpretation of the behaviour of colloidal solutions. Offcen this weight
is derived from measurements of sedimentation and diffusion. In the
case of unckarged colloidal particles this method is straightforward. In
the case of colloidal electrolytes, however, the electrical interaction amongst
the migrating ions may produce very pronounced non-ideality eifects in
sedimentation and diffusion. Moreover, it is difficult to avoid the use of
unmeasurable quantities, like single ion activities, difFusion potentials
etc. in the analysis. These facts have given rise to some doubt [1] about
the meaning of the colloid molecular weight that is found from experiments
in this case.

This problem will be treated in the present and especially in the
foliowing papers.

§ 2. The system
In actual systems in which we are interested, the colloidal electrolyte

is usually accompanied by one or more low molecular weight electrolytes
(buffer solutions, monomeric soap ions, etc.). An analysis will therefore
have to cover at least systems with one solvent and two electrolytic
solutes.

We shall restrict our discussion to the aqueous solution of one electrolyte
or to that of two electrolytes that have one ion in common. Examples
of the latter system are: NaCl + KCl in water or Na-albuminate and
NaCl in water. In the present paper we will only derive general equations
into which the properties of one particular system have not yet been
introduced; later [2] these results will be applied to the special case
where one of the electrolytes is a colloidal electrolyte.

The common ion will be indicated by 2, the other ions, building with
2 the neutral electrolytes I and II, by l and 3. We assume that electro-

*) Present address: Koninklijke/Shell Laboratorium, Badhuisweg 3, Amster-
dam-N., The Netherlands.
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neutrality is obeyed always and everywhere in the solution, so:

= O,,.
es «3 + 03363 = O

where c is the concentration in grams/ml and e the charge per gram of
the ions ; the charge of GI ions l is compensated by the charge of c$i ions
2 etc.; clearly

§ 3. Methods of calculation

In sedimentation and diffusion in the systems chosen in § 2, the dif-
ferences in mobility of the different ions, and in the forces that are
working on them, generate a sedimentation potential (field strength Esea)
and a diffusion potential (field strength Efaa).

There are two methods to describe the processes:

a. The first one is the 'kinetic' method. Here the velocity of each kind
of ions is considered as the result of the forces on these ions. In oür case
these forces, per gram of the ions i, are:

A force from the centrifugal field:

(2) jKcerLtc = (l-viQ)m2x

where v is the partial specific volume, Q the density of the solution, and
o>2x the centrifugal field strength (ca = angular velocity = 2nv, with
v — number of revolutions per second, and x = distance from the centre
of rotation).

A 'force' from the concentration gradiënt dc«/dx:

ET \ dc{

where E is the gas constant, T the absolute temperature, and Mi the
'molecular' weight of the ions i.

A force from the electric field:

(4) Kei = etE.

In dynamic equilibrium the sum of these (primary) forces is compensated
by the frictional force K f, in case of moderate velocities this frictional
force is equal to :

(5) Kf=-ftvt'

where Vj is the velocity of the ions i, and /V their frictional factor.
Considering the equilibrium between the primary and the frictional

forces for a hypothetical (see § 6) process in which the force (2) or (3)
is acting separately (: at ^7 = 0), the following quantities may be defined:
sedimentation constant:
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diffusion coëfficiënt:

(7) Dt(D at E = 0 !) =
VAI^Ï

dx
Furthermore we define:
electrophoretic mobility:

(8) ut = -^ = j .

It is generally assumed that the frictional factors in (6), (7) and (8)
are the same, but one should bear in mind that this is an assumption.
Accepting this assumption, we may express the velocity of the ions in
the quantities s^ m and D{. The result of such a calculation is given in § 4.

We note that in eq. (3) we did not take —grad pt, but only the ideal part of
— grad pi as the 'force' in diffusion; consequently cross-effects (influences of
concentration gradients of other ions) have been omitted. Fortunately, in our
systems the electrical interactions due to Ese& and .É/dut, and accounted for in the
equations in § 4, largely predominate the omitted interactions. Formally, the
interactions not accounted for in this way might be incorporated into the coefficients
of friction.

Finally we remark that the assumption of the equality of the frictional
factors in eqs. (6)-(8) is equivalent to the assumption that:

l-vtQ ET et
(9) — =

b. The second method is that of irreversible thermodynamics. A detailed
discussion of this method follows after § 4.

We prefer this method above the kinetic one, because no assumptions
have to be niade about frictional factors or separate ion activities, while
nevertheless mutual influences can be accounted for completely.

§ 4. Besults of the, kinetic treatment

In the usual experimental set-up no net transport of charge through
the solutions is possible, i.e. the electric current density lei is zero:

(10) /el=

This implies that the result of every sedimentation or diffusion process
is a displacement of the neutral electrolytes I and II, with a velocity
YI = VI and vn = V3. For this reason we define the folio wing mass flows:

(H) *
«/II

For each ion constituent in a mixture of electrolytes in a centrifugal
field KCenti + Kei + Kf is put equalto zero. Eq. (10) is used to eliminate E.
This method has been worked out previously by TISELIFS [3], SVEDBERG
and PEDEESBN [4] [5].
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In case of our system of § 2, the mass flows (11) are then given by:

(12)

l^I.sed = Cift>2a; Si —Ti(«i —Sa) — TI(SS —Sa)
} L C21 J

f Jll.sed = CnCüPx S3 — T3(S3 — S2) — Ts(5i —S2)
l L C2S J

where T are transport numbers defined by

__ ct et Ui

Aa the mobilities u-i are considered with respect to the vessel and not with
respect to the solvent, these transport numbers are not exactly equal to Hittorf
transport numbers.

These equations will be discussed in § Ib.
In a similar way the behaviour of a mixture of two electrolytes in a

solution with concentration gradients has been studied by NEBKST [6]
and, later, a.o. by HARTLEY and ROBIÜTSON [7]. The mass flows in diffusion
can be shown to be equal to:

dx
(13)

We shall corne back to these equations in § 7c.

§ 5. General remarks on the treatment by irreversible thermodynamica

In irreversible thermodynamica [8] [9] [10] attention is directed
towards the entropy production that results from irreversible processes.
This entropy production per second per unit volume will be indicated by a.
It can be expressed as the sum of products of two terms. For isothermal
processes this expression is:

(14) Ta=

There is some freedom in choosing J j and Xj-, often they are easily
visualized as macroscopic "'fluxes' and 'forces'.

If we describe a system by a certain set of state parameters (e.g. temperature
and chemical potentials), the deviatioii of these parameters from their equilibrium
values may be seen as the 'forces' which causa the irreversible processes, in the
form of 'fluxes' (e.g. heat flow and mass flow).

In general every flux will be a function of all forces and they are linear
functions for small deviations from equilibrium:

(15) J^j^LflXi (j=l,...n).
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The eqs. (15) are called the phenomenological equations. Using the
argument of microscopic reversibility in time, it has been shown [11]
that the following relations (Onsager relations) exist between the coeffi-
cients LJI:

(16) In, = LH.

Eor every problem first an equation (14) must be derived. This is done
by writing down the total rate of change of entropy of the system. If
we are dealing with continuous systems, where the state parameters vary
continuously in space, we consider the entropy change in an infinitesimal
volume element.

This entropy change is not necessarily positive; e.g. in the 'higher concentration
part' in a diffusion cell it is negativo. The irreversible part, a, of the entropy change
however (the sum of the total entropy change and the divergence of the entropy
flow through the volume element) is always positive. E.g. in a constant concen-
tration gradiënt of a single substance just as much material leaves the volume
element as has entered into it; leaving it, however, it has a higher entropy
(per unit of mass) than when it came in; the total entropy of the volume element
remaining constant, a is positive.

Sedimentation as well as diffusion are typical irreversible processes.
In both cases the system is moving to a more probable state. If there
is no external field, as in diffusion, this means to a homogeneous con-
centration distribution; if there is an external field, as in sedimentation,
this means: to a state of lower free energy.

For diffusion the nature of the entropy production in a volume element was
discussed above. In sedimentation there is also an entropy production. Considering
a volume element in the 'constant concentration regioii' in the sedimentation
cell and working isotherrnally, there is no entropy change; the entropy production
is equivalent to the frictional work done by the fleld 011 the volume element, and
is delivered to the surroundings as heat. No essentials have to be added to this
discussion for the combined processes of sedimentation and diffusion.

When dealing with electrically charged particles, an external eleetric field may
also contribute to the entropy production, just as a centrifugal field. A short
discussion of the nature of the eleetric field in sedimentation is given in the next
section, a more comprehensive treatment is postponed to § 8.

§ 6. The entropy production and the phenomenological equations

An expression has been derived by HOOYMAN et al. [12] for the entropy
production er in a system of n components (which may have an electrical
charge) where a centrifugal field (co%), an eleetric field strength (E) and
gradients of the chemical potential ((grad /J.K)P,T) are present (P is the
pressure). Temperature gradients are excluded and the condition (17)
of electroneutrality has already been introduced:

(17)
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This expression is:

(18) Ta= ijfc«{(l

The super script a in the mass flows Jfc
a = CüV^ means that the velocities

niay be chosen relative to an arbitrary reference velocity; this is per-
mitted [13] [14] when the time derivative of the weight-mean velocity
(centre of mass velocity) of the components in a volume element is zero,
a condition which may be assumed to be satisfied in our case.

Eq. (18) was already applied [14] by HOOYMAN to a multicomponent
system of uncharged particles; we will apply it to our system chosen
before, where charged particles are present. An equation analogous to
(18) for the case that there are charged particles, but no concentration
gradients, was derived by DE GROOT, MAZTJB, and OVEKBEEK [15].

We choose as reference velocity the mean volume velocity v°, defmedby:

(19) V° =

where V& is the velocity relative to the wall of the vessel. So:

(20) J*° = ct(v*-v°)

v° is zero if [15] VK does not depend on pressure and concentrations. We
suppose this condition to be satisfied, so:

(21) v° = 0.

By using (19), (20) and (21) we may eliminate the mass flow J°soivent from
(18). The resulting equation is again of the type (14).

From here we will restrict our discussion to the simple system chosen
before. Because the solution may be considered as being built xip from
three electroneutral components O (solvent), I and II, and an electric
current may be present, but zero volume flow imposes one restriction,
there are three pairs of for ces and fluxes. We choose as fluxes of matter:

(22)

where, in view of (20) and (21), the superscript O has been omitted. The
electric current (23) is chosen as the third flux:

(23) Iei=
«=1 i=l

Then, by using the following relations:

ei vi + ca vz = ei vu ; c3 v3 + 033 «2 =

C23[i2

= l
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the entropy production may be written as (writing grad /j, for

m . r V-r, . l A V2\ „ l „ , , 1 V2

(24)

Iei\E + — f l - — }u)2x grad /j,2 H — grad[M>
[_ ez\ v0J e2

 & r e2 fo J

+ Ji\ ( l ï \(üzx {(l-ciiviijgrad^i-fciivigrad/in}
LA W°/ Co^o J

+ -/n (l - -^ J co2 a; - ̂ - {(l - ci.t'i) grad ^n + ei i>n grad ̂ 1}

or

(25) Ta = Iei<p^rJix+J-my}.

As a result of choosing simple fluxes, we have run ïnto rather complicated
expressions (rp, % and ip} for the forces. Other choices would have been
possible, but with no essential gain in simplicity.

The phenomenological equations, to be chosen from (25) are:

( /ei = A
(26) <J'i = A

( JU = A

in which, according to eq. (16)

(27) A2i = Ai2; ^31 = ̂ 13;

All quantities at the right hand side of eq. (25) are measurable. For the fluxes
this is self-evident; the forces / and if cpntain only measurable proporties of
electroneutral substanees, as may be seen by inspection of eq. (24). The force cp,
however, contains the unmeasurable quantities Vz and ^z of the ions 2, and E
itself is measurable only in the absence of concentration gradients and centrifugal
field. Nevertheless <p itself oan be measured. From eq. (26) we have:

(28) <p = 1̂

or, using eq. (27):

(29) v = I^TA^'
-a.il

In eq. (29) all quantities at the right hand side can be measured; for Jei, %
and ip this was mentioned above, and according to eqs. (30), (31) and (32) Au,
Azi and Asi are also aecessible quantities.

As mentioned above E is only measurable at co2x = O and in the absence
of concentration gradients. In that case E is the only contribution to (p.
This allows us to find simple meanings for the coefficients Aii, AZI and
ASI, viz.:
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(30) An — l -=- ) — *spec (specific conducttvity)
\ MJ lai"x"=0

gradcj=0

(31) Azi = (-j) = CIMI
\ JU t(Osx=Q

grad c j= O

(32) 1̂31
\ -" ,

gradcr^O

No simple meaning can be attached to the coefficients Am, ^23 = ^32
and ^33. They can be determined by measuring Ji and Ju in experiments
in which i and ip are varied independently. This cannot be done in
sedimentation experiments at constant concentration, because then %
and ij> are strictly proportional to each other. In diffüsion experiments,
however, grad JJL\ and grad ^n can be varied independently and thus
AZZ, Aza^Asz and A3S can be determined.

Pinally we want to mention that the application of irreversible thermo-
dynamics to sedimentation and diffusion has also been discussed by
HAASB [16], MILLBE [17] and SCHÖNBRT [18].

§ 7. Application of the general equations to special cases

In the present section we shall analyze a number of special cases without,
however, introducing the particular components into the irreversible
equations; this will be done in a succeeding paper.

a. Sedimentation and diffusion in a solution of one electrolyte.
In this case eq. (24) reduces to:

(33)

Ta = /ei ü + - l - - aPx-- grad ̂  + - • - grad ̂ "l
62 ° ^ 62 VQ ° ^ J

[(
L\

l - -} a)zx -- grad ^i

or:

(34) Ta = Iel<p'+JlX'

from which:

We consider the sedimentation (co^e^O, grad^i = 0) and the diffusion
(co2x = 0, grad/^i^O) separately, both at the experimental condition
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lei = 0. Then we find:

l

(36)

~ï^E ~1
n

l

«)2a;=0

= ƒ _ R . :5iH + R \ gTad ft1 == p §rad <"i

From (36) and (37) we see that the concentration dependence, as far as
the factor P is concerned, is exactly the same for sedimentation and
diffusion. For non-electrolytes this conclusion could already be derived
from HOOYMAN'S results [12].

The diffusion in a mixture of electrolytes was treated by ONSAGER
and Fuoss [19]. Their basic equation for the diffusion of one electrolyte
was:

_ grad ,MI

d*

in which ü is a mobility factor calculated in the theory. It is equivalent
to our factor P/COVO and this means that Onsager and Fuoss' calculation
can also be used for sedimentation.

From (36) and (37) the wellknown equation (38) for MI can easily
be derived. In the derivation use is made of the expressioiis

) = l—vio and grad/m = (iRT/Mi) grad In

(38) MI =

b. Sedimentation in a solution of two electrolytes.
Here grad ei and grad en are zero. Considering again the situation

where Iei = 0, the following expressions can easily be derived from (24),
(25) and (26):

(39)
o

— O

-/Il.sed = [NK-J( l - -̂  + NU~u( l - —
l \ V V wo

w*x
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in which:

(40)

A12
—.
-4 n

h

lll

Il2UT t •*-•*- l -Z f

#11-1 = - A3l-~ + AS2

AT __ 4 -4l3

111
*33

where, from (27):

(41) JVn-i = NI-U.

For a further evaluation of (39), expressions for the ^4's must be introduced.
From (24)-(26) we have:

(42)

(43)

(44)

v0

21 • — l
62

A l 2
AS1 • — l --

«2

113

= Cl 61 «i H- C2 62 *2 + Cz 63 «3

. A T+ A23 l --
V0 VQ

A il Vl\ , A il V

-Ï32 l l --- + -433 l --
\ Vo/ \ V0

grad cj = O

(Ü2'X^E = 0
gradcj—O

gradcj=0
gradcTT=0

Introducing (42), (43) and (44) and (30), (31) and (32) in (39) and (40)
we find:

(45)

SI~-TI(SI — SZ) -^(ss — sz)
L C21 J

a; 53 — rs(sa — «2) 73(^1 — 52)
L C23 J

where again electric transport numbers, defined bef ore, are used.
The equations (45) are the same as the 'Tisëlius-equations' (12). They

are formally correct, but have the disadvantage that they contain the
unmeasurable quantities s»; these entered into the present treatment
from the expressions (42)—(44) for the ^4's in terms of these unmeasurable

The statement made at the end of section 6, that sedimentation
measurements alone are not suffieient to determine the whole set of A's
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is easily verified here. Measurement of Ji)Sea and Jn,Sed gives only two
relations between 3 N' s or with the aid of eq. (30), (31), (32) and (40)
five relations between 6 A's. The introduction of the st's does not change
this situation.

One additional assumption allows us to determine all N's and A's.
As such we may choose the model assumption (9), putting Q
which is a good approximation for dilute solutions

(9)

With this assumption, and combining the wj's into vi and vu, the eqs. (45)
are converted into a more practical form in which the coemcients IV
are now written in terms of accessible quantities.

(46)

It should be realized, however, that by introducing eq. (9), it is
postulated that the interaction terms, except those described by the
sedimentation potential, are identical for electrophoresis and for sedi-
mentation, and that in many actual cases this postulate will be incorrect.
c. Diffusion in a solution of two electrolytes.

Here o>2x = 0. Again we study only the situation where /ei = 0. The
form of the resulting equations will come out to be completely the same
as that of the equations derived by HOOYMAN [20] for uncharged particles.

For reasons of convenience we will restrict ourselves, without loosing
essentials, to the case of dilute solutions where we have:

l — l «s 1—Cj.Vi

Then we find from eqs. (24)-(26) and (40):

{Ji}raZa._0 = Ji.aift = -Ni-T grad pi-Ni-n grad pu

{^ii}m*o;=o = Ju, am = —Nu-i grad pi —N u-u grad fiu.
(47)

Usually diffusion is described in terms of concentration gradients viz.

dei _. den

(48)

r
Jl'ditt = ~

dei den
l.difl = — JJlI-l -j JJll-ll -j—.ax dx
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By introducing:

n ö«i dei ÖMI dengrad MI = -— —-: + ~- -^=
oei dx oen dx

(49)

öci do; öcn da;

or inversely by expressing dcjdx as a function of the grad //'s, the AT's
can be expressed in terms of Z>'s and ö/^/öc's. The reciprocity relation
(41) gives a relation between the four difFusion coefficients (in general
DI-U^DH-I). Recently the experimental verification of the Onsager
relations, among them of the relation (41) from diffusion measurements,
has been reviewed by MILLEB [21].

Two remarks can be made:
1. In principle the four diffusion coefficients in eq. (48) may be derived
from experiments ; important work in this field has been done by GOSTIWG
c.s. [22] [23]. From the D's and è^w/öc's which have to be determined
separately, the three N' s can be calculated and from them the complete
set of A's (eq. (26)) is accessible.

Once the N's are known from diffusion experiments, the sedimentation
behaviour (eq. (39)) may be predicted. As indicated before, however, the
reverse procedure, prediction of diffusion from sedimentation, is not
possible.
2. The cross diffusional coefficients DI-H and DU-I in eq. (48) describe
the mutual interaction of the two diffusing species. For ideal non-
electrolyte solutions their value is zero. In ideal electrolyte solutions,
however, they contain important electrical interactions, as described
formally by the coefficients

^Dz and Z>iM =

in the simple kinetic eqs. (13). It may be interesting to check whether
these equations, though not containing non-ideality effects, are consistent
at least with the Onsager relation (41). This is indeed found to be the case
if ideal relations between concentrations and chemical potentials are
assumed and eq. (9) is used for the interconversion of transport numbers
(containing w<) and individual diffusion constants (Dt).
d. Sedimentation equilibrium in a solution of two electrolytes.

In the sedimentation equilibrium the gradiënt in chemical potential
of each electroneutral component is compensated by its gradiënt in
potential energy. Therefore:

( graden = ( l — vIiQ)a>2x.

These equations folio w immediately from equilibrium thermodynamics.



They can also be derived froni the irreversible equations, by putting all
fluxes in the phenomenological equations (26) equal to zero, while
applying:

= and CiVi-f- Cnfn + co«o = 1.

In sedimentation equilibrium the equations (50) are valid everywhere
in the cell. At every moment during sedimentation, however, they may
be applied to the meniscus and the bottom of the cell, where automatically
all the fluxes are zero, a statement due to ARCHIBALD [24].

§ 8. Field strength and electromotive force in sedimentation cells

It may be worth while to pay attention to the distinction that can be
made between the field strength E and the electromotive force per unit
length F.

In a solution without concentration gradients the field strength E
can be derived from the first of the eq. (26).

•M V- e- - - VZI ) Ui — - — [ j, — • ) 0} X,

The electromotive force per unit length between electrodes that are
reversible to the ion 2 is given by eq. (52). See KOENIU and GRINNELL [25],
MlLLER [17] or MAClNNES [26]

/ - O N v(»2) F =
''spec 62

The main difference between the two expressions is given by the replace-
ment of v%, the specific volume of the ions 2 by v2 elec, their specific volume
in the electrode. Other differences (which disappear for dilute solutions)
are the replacement of I/VQ in (51) by Q in (52) and the difference between
the mobilities ui (with respect to the cell) and U{* (with respect to the
solvent).

If the cell is allowed to come to sedimentation equilibrium, E and F
are given by

(53) -Eequii = -- ( l - W2 g) co2 x J -- grad ^262 e2

(54) -Fequil = -- ( l - «2 elec g) CO2 x.

The first equation is easily derived from the postulate of constancy
of the chemical potential (including pressure and electric contribution)
for the ion 2. The second one states that the only source of work is
displacement of the species 2 from one electrode to the other.

Sedimentation E.M.F. 's of the type (52) (at /ei = 0) have been measured
by MACIKKES c.s. [26], ELTON c.s. [27] and by RUTGEES and JACOBS
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c.s. [28]. By some authors [27] [28], using colloidal solutions, the
measured values have been interpreted as if they were the unmeasurable
E's in the solution. Fortunately, if one of the ions is very large, its
contribution to the sedimentation potential or E.M.F, may be over-
whelming so that the difference between E and F may be neglected in
those cases.

Further, it appears from eqs. (53) and (54) that at sedimentation
equilibrium in general both the sedimentation E.M.F, and the sedimenta-
tion field strength differ from zero. The statement [29] that at equilibrium
the shift of the positive ions relative to the negativo ones is zero does
not seem to be correct.

Summary

Some aspects of the sedimentation and diffusion in a solution of one
electrolyte and in a solution of two electrolytes that have one common
ion are investigated.

General equations for the mass-flows in sedimentation and diffusion
are derived by using thermodynamics of irreversible processes. These
equations are compared with those derived earlier from a kinetic
description.

Special attention is paid to the measurability of the phenomenological
coefficients in the irreversible equations and to the meaning of the
sedimentation potential.
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