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SUMMARY

When capillary viscometers are used for measurements at different
rates of shear, accurate evaluation of the mean effective pressure head
is required for calculation of the rate of shear. At high pressure heads
an arithmetic mean value of the heads at the beginning and end of the
experiment may be used. but for low pressure heads this procedure is
incorrect. The situation is examined theoretically and formulae are
obtained which enable the mean effective pressure head to be calculated
from viscometer dimensions and measurements of the pressure head at
the beginning and end of flow from the index bulb. The main case examined
is for flow from a spherical bulb into a cylinder.

In measurements of liquid viscosity using capillary viscometers of
the Ostwald type. the pressure head forcing the liquid through the
capillary is usually taken as the excess gas pressure (if any) applied to
the measuring bulb plus the pressure head of liquid in the viscometer.
During an experiment, as liquid falls in one side of the viscometer and
rises in the other, the pressure head is varying and for any calculations
involving this a mean value must be taken. For the measurement of
viscosity by comparison with a Standard liquid in the viscometer it is
unnecessary to know the hydrostatic head since it is the same in both
cases. Ho wever, when capillary viscometers are used for measurements
of viscosity at different rates of shear, the average rate of shear, D sec"1,
can be defined by the expression:

m D- 3Qgr
(i) U~ Slr,

where H is the mean effective hydrostatic head, p and r) are the density
and viscosity of the liquid respectively, g is the gravitational constant
and f and l are the radius and length of the capillary. Thus the computa-
tion, or measurement, of the mean effective pressure head H becomes
an essential feature of such experiments.

* Present address: Department of Colloid Science, University of Cambridge,
Cambridge, England.
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Many authors have assumed that the mean effective pressure head
can be taken as the arithmetic mean of the two extreme pressure heads,
that is the pressure at the begimiing and end of liquid efflux from the
index bulb. It was pointed out, as early as 1881, by KOCH [1], that this
assumption is, under many conditions, incorrect, the error only being
negligible when the total applied head is large. Following KOCH several
other authors [2—7], have also deduced formulae for the calculation of
the mean effective pressure head.

In some recent work on the electroviscous effect in concentrated sols
of silver iodide [8], a modified Ostwald viscometer of the type devised
by Fox. Fox and FLOEY [9] was eniployed for measurements at rates
of shear over the range 200-2000 sec™1; this is illustrated in Fig. 1. In

Fig. 1. Ostwald viscometer based on the
design of Fox, Fox and FLOBY [9].

the calibration procedure it was found that at low rates of shear, when
the calibration constants were plotted against the arithmetic mean of
the pressure heads the poiiits diverged from the linear plot for pressure
heads of less than 10 cm of water. Thus under these conditions it was
no longer permissible to use the arithmetic mean value. Moreover, it is
difficult to measure the mean effective pressure head of a viscometer
experimentally, since this depends upon factors such as the length of
time spent by the liquid in the lower half of the bulb in relation to that
spent in the top half, although the two extreme heads can be measured
accurately. Thus it is evident that the most easily accessible method is
to use these measurements to compute the mean effective pressure head
from a formula derived for the type of viscometer employed. The necessary
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equations for this calculation. for the flow of liquid from a sphere to a
cylinder, however, do not appear to have been published. The situation
was therefore examined theoretically, and during this examination it
became clear that a general solution could be derived, in tering of visco-
meter constants, which was applicable to most types of capillary visco-
meter. The solutions for several types of viscometer have been worked
out, and in one case, flow of liquid from a sphere to a cylinder. they have
been tested experimentally.

DERIVATION OE AN EXPRESSION FOR THE GENERAL CASE

To derive the general expression we will consider the case where the
volumes are symmetrical about mean planes on the efflux and influx
sides (Fig. 2a), namely the planes X and Y. Then if h is the arithmetic
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Fig. 2. a) Flow from a spherieal bulb to a cylinder;
b) Correction for the volume of the neck.

mean of the pressure heads, i.e. the distance between the planes of sym-

metry X and Y, 1 2, and at an instant of time t the liquid is at a

distance x above the mean line X and is at a point where the cross sectional
area is A (shape of vessel not defined), then on the influx side the liquid
will be at a distance y below the mean line, where the cross sectional area
is B. The volumes about the mean lines are equal and hence we may write:

ƒ Adx = ƒ Edy.
o o

When the liquid is at a point x above the plane X in the top bulb the
pressure head is

h + x — y.
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Therefore, the rate of flow = k(h + x + y) where k is a constant, neglecting
for the moment any corrections for kinetic energy effects and for
resistance in other parts of the apparatus. We shall also restrict the
arguments to the pressure head of the viscometer remembering that the
pressure applied P, will be (h + xJ

ry)Qg. Then if in an interval of time dt,
the distance above the mean plane X changes from x + dx to x and the
cross sectional area is equal to A, the rate of flow is:

— A —
dt

whence

If x changes from d to —d in time t,

d t

(2) -jj^d^fkdt^kt.
-d

Therefore, for a mean effective pressure head H, equation (2) can be
written

— — dx = kt,
J XZ

-d
giving

d
fAdx

(3) S -h ' if A d̂a;
_a 1 1 x+y

Equation (3) is a general relation, which is true even without symmetry,
but for the symmetrical case we may write:

d
(Adx

H o

k - A
da;J

o 1- V h )
whence,

_ h
(5) #= 5 J"

l+JL-2
^

l A dx ƒ A dx
o o

Thus

fj __ Arithmetic mean of the extreme pressure heads
Correction factor '
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this is for symmetrical cases a general expression, and it is only necessary
to solve the integral

(5a) iA2n d
$Adx
o

for the conditions involved, and to determine to what limit n has to
be taken.

DERIVATION OF EXPKESSIONS FOB PARTICULAR CASES

Case 1. Flow from a Cylinder to a Cylinder

If the cross-sectional area of one cylinder is A and the other B we
may write

Ax=By

whence by substitution in equation (3) for y, we find as A and B are
constant:

'>
h * . i+(é+*\*

-l-a

V B ) h

Thus if hi and Tiz are the initial and final heads,

and

(6) H =
, iln=-

This is MEISSNEB'S formula [2], and we note that this equation also
applies for discharge from an open cylindrical cup into air; this is also
very close to the situation in an Ubbelohde viscometer [7].

Using the general formula, equation (5), we have

d
ƒ A dx = A d

o
and since

A+B
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the correction factor, considering only the first two terms, is:

d d
-i l fA-}-]3\2 f
i -j- ( ) l

o

whence integrating, we have

Thus if the diameters of the cylinders are 2a and 26, A =jia2 and B==jzb2,
giving:

(7) H=-

This equation gives the mean effective pressure head in terms of the
radii of the cylinders and should lead to the same answer as equation (6).
For the case of two cylinders the latter equation is more convenient but
as we shall see later, for bulb viscometers simple expressions of this type
do not appear and the genera! solutioii becomes the more convenient.

Case 2. Flow from a Sphere to a Cylinder

This is the case to be considered for an Ostwald viscometer of the
type devised by Fox, Fox and FLOEY [9]. In the first instance we shall
consider the case when the bulb is a perfect sphere, and then extend this
treatment to the more practical case; that is, the situation when the
liquid initially starts in a cylindrical neck, flows through the spherical
bulb and then passes into another cylindrical tube.

2a) Flow from a, Perfect Sphere to a Cylinder

If the diameter of the sphere is 2a, and the diameter of the cylinder
is 26, then following the previous nomenclature with d = a (this means
that the index mark comcides with the surface of the sphere) we may write

whence
X ,

7 0 r / o o\ i / o '"**"
'TT f)£ •!/ jjr f 1/7^ T l O T* ' TT l n*"JC —

O V s

and

Then if we again consider the correction terms given by expression (5 A),
the coëfficiënt of ljhzn is:

A

$Adx ƒ (a2-a;2) d*
o o
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Substituting x = au and S= ^—-, then the coëfficiënt reads:

Since

2n
du

ƒ (l-M2) du

we have

£*ƒ'

whence on expansion of ($ —M 2 ) 2 n followed by integration we obtain the
general term

l-(2n + 3) (2n + 5) T (2n+5) (2n + 7) '" (6n + l) (6n

where 2n(7i, ZnC'z, etc. are the binomial coefficients. Thus the mean effective
head is given by,

m "H = a6 rS* 2S l "l
+ 36* h* Lï5 ~~ 35 + 63J

a12 rS4 4<S3 6<S2 4/S
36*fe2 LÏ5 ~35 ' 63j ' 2768A4L35 ~"63" + ~99~ ~Ï43

"l

For a typical viscometer the capacity of the bulbs was approximately
5 ml and the measured radii of the bulbs and the cylinder were found
to be 0.9 and 0.7 cm respectively, giving 8 = 4.814. From these values
H has been calculated for various values of h using equation (9); the
results are recorded in Table 1.

TABLE l
Comparison between H and h for Flow from a Sphere to a cylinder

h cm

30
20
10
7.5
5
3
2

H cm

h
1 + 0.9484/ft2

29.97
18.96
9.92

h

1 + 0.9484/A2 + 2.056/fe4

29.97
19.96
9.90

7.38 i 7.38
4.82 : 4.80
2.71 i 2.66
1.62 1.46

h

1 + 1.139/&2

29.97
19.95
9.89
7.35
4.78
2.66
1.57

It is evident from Table l that for pressure heads greater than 10 cm
the correction is insignificant, but below this it is advisable to apply a
correction. Between h values of 10 and 3 cm only the coëfficiënt of l/A2
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needs to be considered but below this the coëfficiënt of 1/A4 must also
be included. The values of these corrections suggested that it might be
possible to approximate equation (9) even further, for most of the range,
and simply write,

(9a) 3 =
h h

1 + 45 &4 A2 _

Calculations of H using this equation are given in the last column of
Table l; it is apparent that we inay use this equation down to an h value
of 3 cm without introducing an appreciable error in H.

For a viscometer of the Fox, Fox, and FLORY type [9] the kinematical
viscosity is given by

where

SQ(1 +nr)'

r is the radius of the capillary. nr is the end correction and Q is the
volume of liquid discharged per second; ft is a kinetic energy correction
term. Thus <x as determined experimentally should be directly proportional
to the mean effective pressure head H. In Fig. 3 a graph is given of oc
values plotted against H and h. With H as abcissa a good linear plot
results passing through the origin. whilst using h the curve becomes non-
linear at values of h less than 10 cm.

/o

Viscometer
constant

*xlO3 S

8 10

H or h cm

calculated valuesFig. 3. Viscometer Constant a vs. Pressure head cm;
of mean effective pressure head H, arithmetic mean head h.

2b). Flow from a Sphere with Necks to a Cylinder

Since in viscometry we are usually dealing with a spherical bulb joined
to a cylindrical tube at top and bottom, upon which the index marks are
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engraved, this situation corresponds to the more practical case. Thus
if the diameter of the spherical bulb is 2a, the diameter of the associated
cylinders with the index marks is 2c (see Pig. 2b) and the diameter of
the inflow cylinder is 26, we have:

equations as for case 2a existing from x = 0 to Ka2 — c2 and equations

as for case l existing from x = l a2 — c2 to d, where d is the distance of the
index mark above the centre of the sphere, whence

(10) . 2 - 2 s / °

From the calculations in the previous section it appears that the l/A2

term in the correction factor is the most important and hence we have
to evaluate the integral

: = 7t

O

ƒ

Thus putting
X i r, 0 /«2+&2\u = - and &!— 3 —5—a \ a2 /

the solution is,

fias r S* u? _
3 2 6 4 L 3 5 ' 7 5 ' 7 9 J M=0

Frt!3 _ (r,2 _ ft2\'/,i _

If, as in the previous case, we retain for a first approximation only, the
S2 terms, this becomes,

and we find.

(H)
3 c2 d

which when c = 0 and rf = a becomes equal to equation (9A).
For the viscometer employed, with a and b as before, c was found

to be 0.28 cm and d= 1.25 cm and calculations of H using equation (11)
yielded the values given in Table 2.

Comparison with Table l shows that under the conditions employed
in this viscometer, i. e. with the index mark on the neck close to the bulb,
then for all practical purposes, down to A = 5 cm, we can neglect the
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volume of the neck, and no serious error is introduced if we use the
approximate equation (9A).

TABLE 2
Values of H after oorrection for the volume of liquid oontained in the neek of the bulb

h om

30
20
10
7.5
5
3
2

h
H —

1 + 1.5332/A2

29.95
19.94
9.85
7.30
4.71
2.56
1.45

APPENDIX

An alternative approach to the solution of case 2a can be made by
evaluating H in terms of the rise in level of the liquid in the cylinder.
From Fig. 2a, we obtain that the unit of volume in the sphere dV is
given by

dF = -n(az-x*) dx =

On integration between a and x, the rise in the cylinder is

/ io \ „. v*' ^) (fö~r6Q')
(12) 2/ = 'gp •

Note that y is counted upwards from the initial level and thus differs from the
y shown in flg. 2a.

Then if / is the height between X and the initial level in the cylinder
and H is the pressuré head at time t,

H = f~x
and

giving on substitution for y from equation (12),

Further, we can write

when

and since ^max = £L
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Thus by substitution for ƒ in equation (13) and remembering

dF= -a2~xz7idx,

whence the total time for flow from x = a to x= —a is

a
m Wn f 3(«2-a;2) ,

~]T j (3&afe + 3(a2 ' "" ~

If the effective pressure head H is assumed to be the meaii effective
pressure head H

AV , fj
-r- = KH
dt

4a3/3&2

H= — - -

and

giving

dx

— a
or

_ Total rise in cylinder in cm
(14) #= — i .

f 3 (a2 —a;2)

—a

Integration of equation (14) leads to the expression,

_ Total rise in eylinder in cm
(15) H — ~~—~~ 2ï s j

L 1/4,8 —a2 J/4/3 —a2 J - a

where

2(a2—a2 —ö) 2 '

This follows since the real root, a. of the cubic expression in the denomi-
nator of the integral is given by

=«(3-?+i/(Ë?)2- (a2+62)T + (^ -i/(^?)a~- («2+^T
and for the conditions used,
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the expression has only one real root, and we may write the cubic as
~j3) with

„ 36%

Thus from equation (15) H can be calculated from the rise of liquid
in the cylinder, which occurs as the liquid flows from one index mark
on the bulb to the other. The rise can be measured accurately using a
cathetometer and for the viscometer employed was found to be 1.98 cm.
Using the values of a and b previously given. the values of H were calculated
for various values of h; these are recorded in Table 3. It may be noted
that equation (15) gives complete values for H and thus enables a direct
check to be made of the errors involved in using curtailed series in equations
(9) and (9A).

TABLE 3
Values of H calculated from equation (15)

h cm H cm

30
10
5
3
2

29.96
9.92
4.81
2.68
1.35

Comparison of these values with those given in Table l shows that
they are in excellent agreement with those given by equation (9), even
down to h = 2 cm. At values of h greater than 3 cm the more approximate
equation (9A) gives equally good results, and since this is much easier
to use for computation it can be used in practice without loss of accuracy.

Van 't Hoff Laboratory,
Univ&rsüy of Utrecht,
Utrecht, Netherlands

BIBLIOGRAPHY

1. KOCH, 8., Pogg. Arm., 14, l (1881).
2. MEISSNBB, W., Chem. Rev. Fett. Harz industrie, 17, 202 (1910).
3. SIMEON, F., Phil. Mag., 27, 95 (1914).
4. BINGHAM, B. C., H. T. ScHLEsmGER and A. B. COLEMAN, J. Am. Chem. Soc.

38, 27 (1916).
5. LIDSTONE, F. M., Phil. Mag., 43, 354 (1922).
6. BABE, G., J. Soc. Chem. Ind., 43, 29T (1924); "A Monograph of Viscometry",

Oxford University Press, 73 (1931).
7. MBBBÜSTGTOK, A. C., "Viscometry", Edward Arnold and Co., London, 12 (1951).
8. OTTEWIBL, R. H. and J. TH. G. OVEKBEEK, Nature, 183, 79 (1959) and unpub-

lished work.
9. Fox, T. G., J. C. Fox and P. J. FLOEY, J. Am. Chem. Soc., 73, 1901 (1951).


