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ABSTRACT 

It  is shown by theoretical calculations that the energy barrier between charged 
droplets in water-in-oil emulsions is strongly diminished when the concentration of 
the emulsion is not extremely low. This is a consequence of the great extension of 
the diffuse electrical double layer in oil. The high concentration in the sediment 
(or cream) therefore strongly promotes flocculation. Gravity also promotes floc- 
eulation directly in all but the most dilute W/O emulsions because the weight of the 
particles in higher layers transmitted by the extended double layers presses on those 
in the lower layers and forces them together. 

INTRODUCTION 

It  has been pointed out in a preceding paper (1) that water-in-oil emul- 
sions flocculate rapidly, notwithstanding the presence of a rather high 
potential on the water droplets. Calculating the energy barrier in the ap- 
proach of two water droplets with a radius of 1 ~ and a surface potential 
of 25 my. a value of 15 kT is found, which ought to retard flocculation quite 
considerably. I t  will be shown in this paper that because of the long range 
of the electrical repulsion the two particle calculations have to be aban- 
doned. By taking interactions between large numbers of particles into ac- 
count the observed behavior of W/O emulsions with respect to floccula- 
tion can be understood. 

EFFECT OF THE CONCENTRATION OF THE DISPERSE PHASE ON 
THE STABILITY AGAINST FLOCCULATION IN 

MEDIA OF LOW DIELECTRIC CONSTANT 

In systems in which water is the continuous phase the thickness of the 
double layer generally equals about 10-3-10-2~ so that electrical interac- 
tion takes place only at very short distances. The potential energy of the 
charged particles at a mutual distance of a few times 10-2# thus equals 
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zero with regard to infinite distance. Consequently the total  energy barrier 
has to be crossed before floceulation can occur. 

In  an oil-continuous system, however, the thickness of the diffuse double 
layer  i s several microns. The  thickness is of the same order as the distance 
between the dispersed globules in a moderately  concentrated emulsion. 
The globules therefore possess a potential  energy with regard to separation 
a t  an infinite distance. Consequently the energy barrier is lowered and the 
stabili ty against  flocculation is diminished. This effect has already been 
mentioned by  Verwey (2).  A further lowering of the energy barrier occurs 
as a consequence of the combined interaction of more than two particles, 
as has been illustrated schematically in Fig. 1 for a globule b under the 
influence of two neighboring globules a and c. 

The influence, however, of all the globules must  be taken into account. 
The  charged globules of the disperse phase are distributed more or less 
homogeneously in the continuous medium. Very short distances between 
the globules will rarely occur owing to the double layer repulsion. 

To calculate the influence of all the surrounding globules on a part icular  
globule b a model for the arrangement  of the globules has to be assumed. 
In  this model we consider twelve nearest neighbor globules to be si tuated 
on a spherical shell Rr with radius R1,  and all the other globules to be 
homogeneously distributed in the space outside a sphere RH with radius 
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FIG. 1. Reduction of the energy barrier. The broken lines represent the interac- 
tion between the globule a and b in the absence of c and between c and b in the ab- 
sence of a. E1 is the energy barrier to be surmounted if particle b approaches a from 
infinity. I t  is reduced to E~ if b is assumed to start from the position in the drawing. 
It  is still further reduced to Ea if the simultaneous interaction with c is taken into 
account. The drawn line is the sum of the two broken lines. 
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FIG. 2. Distribution of droplets interseting with droplet b. Twelve droplets on 

sphere RI, all other droplets outside sphere RII. ,, 

R2 as shown in Fig. 2. The radius R1 is chosen equal to the average distance 
between the droplets or to the distance they would have in a regular 12 
coordinated lattice. 

So if ~ is the volume fraction of spheres with radius a 
a ~ 

= 0.74 - -  

o r  

1.81a 
R, = ~ / ~ ;  [1] 

and R2 is chosen in such a way that  the volume within R~ just corre- 
sponds to the volume available to thirteen particles. 

4 ~ R 8  - 13 4~ 
3 0.74 3 

o r  

2.36a 
R2 = 1.3 R1 - [2] ~ , ~ "  

The energy of interaction between a pair of globules at  a distance x be- 
tween the centers is, according to ¥erwey and Overbeek ( 3 ) :  

VR = 3ea2¢02 e 2~a e , [3] 
X 
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Observing tha t  
and 0 we find: 

in which C0 is the surface potential, e is the dielectric constant of the me- 
dium, and K is the reciprocal thickness of the double layer. Here, ~ is a fac- 
tor varying between 0.60 and 1.00 which for simplicity will be put  equal to 1. 

I f  the twelve nearest neighbors can occupy any arbi t rary  position on the 
sphere R~ the probabil i ty of finding one on unit area of the surface is 
12/4~rR~ ~. Assuming tha t  the droplet b is si tuated at  a distance q from the 
center of the sphere R~ and using coordinates as given in Fig. 3, the interac- 
tion energy of droplet b with the droplets in the surface element P is given 
by 

d V ~ -  12 R l s i n a d 0 - R ~ d a . e ¢ 0 ~ a ~ e  2~e-'~. [4] 
47rR1: x 

x = %/R~  + q 2 _  2qR1 cos a and integrating over a 

VR = 6E¢02a2e 2ka e-~R1 e~q -- e-Kq [5] 
KR1 q 

The assumption incorporated in Eq. [5] tha t  the twelve nearest neighbors 
can occupy any position on the sphere R~ is not correct for one of the twelve 
neighbors, viz., for the one with which the droplet b possibly flocculates. 
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FIG. 3. Inte: action of the surface element of the sphere R1 and globule b situated 
in S. Here x al~d q represent the distances between S and the element P and between 
S and the center of the sphere, respectively. 
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FIG. 4. 2. Interaction between globule b and globule c spread over the spherical 

shell. II. Interaction between globule b and globule c in fixed position. 

If we consider, for simplicity, only head-on collisions, this droplet, which 
we call c, has a fixed position as shown in Fig. 4, instead of being spread 
out over one-twelfth of the surface of the sphere. The  interaction with 
particle c spread out on one-twelfth of the shell has to be subtracted from 
Eq. [5] and the interaction with c in this fixed position to be added. 

An expression for the first effect is easily found by integrating Eq. [4] 
over 6 from 0 to 2 ~r and over a from 0 to arc cos 5/6. 

The final expression for the interaction with the first twelve neighbors is: 

V~ - 2 2 2,~a ! 6 e -K'~'/RI~''q~--5/3Rlq 
= e~0ae / ~ - - - - -  ~ -- e -~(Rl+q) [6] 

L/~i -- q ~ 

The calculation of the interaction with all nonnearest neighbors is carried 
out in a similar way by  integrating an expression like [4] but  now integrat- 
ing also over the radius of the shell between 1.3 R1 and ~ .  The proportion- 
ality constant has now to be equal to the number of droplets per unit vol- 
ume. Consequently 

VR(nonnearest neighbors) = 

0.74 ~0~a2e2~ f ~  f ~ ] o 2 ~ e - ~ _ _ ~ R ~ d R s i n o L d , ~ d O ,  [7] 

3 

in which x = ~ v / ~  -t- q2 _ 2Rq  cos ~. After carrying out the integration 
and adding the result to Eq. [6] the final expression for the interaction 
energy of droplet b with all other droplets becomes: 

I e~ q e-~q VR(total) =~o2a2e 2~ 8.88 1.3KR1 -{- 1 -1.3~ - -  K3R13 e q 
[8] 

e -~(~l-q) 6 ( e _ ~ ( R l + q ) _ e _ ~ . x / ~ _ 5 1 3 R q } l  " 
-~ R1 - q KR1 q 
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In most eases the underlined term representing the interaction between 
droplets b and c (see Fig. 4) gives the major effect, but  the other terms are 
by  no means negligible. The lowering of the energy barrier in per cent of 
the value for the simple interaction of two particles is given by: 

lowering -- 

lira V~ total  (q = R~ - 2a) -- { V~ total  (q = R~ - 2a) - V~ total  (q = 0) } 
R i-~ cO 

lim Vu total  (q = R1 -- 2a) 
R 1-->oo 

1200a e 2~ I1.48 1.3KR1 + 1 e_l.~R1 
X 100% - •RI(R1 -- 2 a ~  K2R1 ~ 

(2K(R1 -- 2a) -- e ~(R~-2~) + e -~(R1-2~)) + 2K(R1 -- 2a)e - ~  

+ e -2K(R~-a) _ e--K~/1/3R~--2/3R~a+4a,~ % . 
) 

[9] 

This lowering is represented in Fig. 5 for different values of the volume 
fraction ~ and the reciprocal thickness of the double layer K. 

Although the calculation is admit tedly quite rough, the order of magni- 
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FIG. 5. L o w e r i n g  of t h e  e n e r g y  ba r r i e r  for  f loccu la t ion  in  c o n c e n t r a t e d  e m u l -  
s ions  e x p r e s s e d  in  pe r  c en t  of  t h e  e n e r g y  ba r r i e r  in  an  i n f in i t e ly  d i l u t e  e m u l s i o n .  
D r o p  r a d i u s  a = 1~. 
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rude of the effect is quite obvious. A more refined calculation, taking ac- 
count of the van der Waals attraction, would make the lowering of the bar- 
rier more pronounced. 

I t  is evident from Fig. 5 tha t  the concentration influence of the dispersed 
phase diminishes the stabili ty against flocculation already at  low concen- 
t rat ion of water  in oil, when the reciprocal thickness of the double layer is 
in the order of 0.1 t~ -1. In  the cream layer, where the concentration m a y  
come close to 74 %, the effect is enormous. 

INFLUENCE OF GRAVITY ON- THE STABILITY 
AGAINST FLOCCULATION 

In  an emulsion the droplets settle under the influence of a force fg ,  
which equals 

fg = ~ r a 3 g ( p i -  pc), [10] 

where g -- acceleration of gravi ty  and p~ and pe are the densities of the 
droplets and the continuous phase, respectively. 

This force should be compared to the maximal repulsive force between 
two particles in order to see whether gravi ty  can accelerate flocculation. 

An upper  limit for the repulsive force, f , ,  can be found by  differentiation 
of Eq. [3]. 

f" - d V ~  = ea2~°2e2~a - ~  K + 1 )  , 

in which the factor fl has been put  equal to 1. The max imum value of f r  is 
obtained for x = 2a, the minimum possible value of x: 

( f ~ )  . . . .  e¢  o2 
- ~ (1 -t- 2Ka). [11] 

TABLE I 
Correlation between the Radius a, the Gravitational Force fo Acting on the 

Globules, and the Maximum Slope of the Energy Function between Two 
Globules as Represented in Column 8 

1 2 3 4 

(fr) . . . .  f~ (dynes X 10 l°) a(tt) K(tL-1) (dynes X 10 l°) 

1 0.1 480 5 
1 0.3 64O 5 
1 1.0 1200 5 

10 0.1 1200 5000 
10 0.3 2800 5000 
10 1.0 8400 5000 
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In Table I (fr) . . . .  and fg are compared for a number of relevant cases, 
fg being calculated for water globules of density = 1.00 in benzene of den- 
sity = 0.88 and e = 2.3 with ~o = 80 my. 

I t  is obvious from Table I that  in the case of water-in-benzene emulsions 
floeculation occurs as soon as a few to a few hundred droplets of water are 
situated above each other. For the cumulative weight of a vertical row of 
droplets acts on the lowest one as soon as the condition 

dx f x = 2 a + d  " ~  ' 

where d is the distance between the surfaces of the droplets, is satisfied. 
I t  usually is if the concentration of the disperse phase is not very low. 
The globules on the bot tom of the vessel must therefore flocculate, even 
if the disperse phase is homogeneously distributed over the continuous 
phase. 

The figures of column 3 are too high. On the one hand, the van der Waals 
at traction and the factor/3 (see Eq. [3]) in the formula according to Ver- 
wey and Overbeek have not been taken into account. On the other hand, 
according to Eq. [8] the decay of the energy barrier as a result of the con- 
tribution of all the surrounding globules is less steep than in the case of 
interaction between two globules, for which Eq. [11] has been derived. 

I~ATE OF FLOCCULATION IN ~/[EDIA OF LOW 

DIELECTRIC CONSTANT 

Since the distance between the globules is generally not very large com- 
pared with the thickness of the double layer in oil continuous systems, 
every globule possesses a higher potential energy than if it were at infinite 
distance from all other globules. For this reason after flocculation of a num- 
ber of globules on the bot tom of tile vessel, the remaining globules act 
like an expanding spring which accelerates their migration to the bot tom 
of the vessel. 

Moreover, every globule is forced downwards under the action of the 
cumulative weight of all globules lying above, as has already been pointed 
out. So the velocity with which the globules sink is some orders higher than 
the velocity of a globule that  settles out under the influence of its own 
weight alone. 

Consequently a very rapid flocculation occurs until the remaining bulk 
concentration of the disperse phase is very small; i.e., until the distance 
between the globules has become large with regard to the thickness of the 
double layer. 
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CONCLUSION 

Flocculation by Brownian motion as well as under the influence of grav- 
ity is strongly promoted and proceeds very rapidly in oil continuous sys- 
tems, if the concentration of the dispersed charged globules is not very low. 
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