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I. INTRODUCTION

Electrophoresis is the movement of charged particles suspended in a
liquid, under the influence of an applied electric field. The usual aims of
electrophoresis experiments are the obtaining of information on the elec-
trical double layers surrounding the particles, the analysis of a mixture, or
its separatioinnto components.

The first aim requires a theory connecting the electrophoretic velocity
with fundamental quantities related to the double layer, such as electric
potential, charge, and structure. It is the purpose of this chapter to treat
the meaning of the notions charge and potential of the double layer, to
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2 J. TH. G. OVERBEEK AND J. LWKLEMA

show clearly where confusion with relation to- these concepts might arise-,
and to treat their interrelation with eleetrophoresis and other electrokinetic
phenomena.

The theoretical treatment of the electrical double layer depends on its ,
geometry. The most simple case, viz., the double layer at a flat interface
will be treated first. With this example, already many facts connected with
double layers can be explained. Later in this chapter attention will be paid
to more complicated systems: spherical particles, polyelectrolytes, and
proteins.

II. GENERAL CONSIDERATIONS ON THE STRUCTURE
OF THE BOUNDARY LAYER

The boundary between two phases is not a mathematical plane, but a
layer of finite dimensions. The properties of the two adjacent phases
change gradually over a certain distance. These changes depend both on
the forces between molecules (van der Waals' forces, purely electrostatic
ones, hydrogen bonds, etc.) and on geometrical factors (fitting of the two -
surface layers onto one another). Even in a one-component system the'
density and orientation of the molecules change gradually when going,
for example, from the liquid to the gas phase. This phenomenon has been
treated extensively by Bakker (1) in his theory of capillarity. In a multi-
component system the concentrations in the boundary layer are as a rule1-
different from those in bulk, thus leading to what is commonly called
adsorption.

In most cases the changes near the phase boundary are limited to a
very few layers of molecules, but there all properties of the phases are
changed, including .structure, density, composition, dielectric constant,.
viscosity, etc. If one or both phases contain ions, the transition layer may
be much more extended. In this case it frequently occurs that one type of
ion is strongly concentrated at the phase boundary by short-range forces.
Ions with a sizable hydrophobic part, like those of detergents, although
reasonably soluble in water, will show a tendency to be expelled from the-
aqueous phase into its boundaries with any less polar phase and so ac-
cumulate especially at air-water or oil-water interfaces. Similarly Ba++

and SO4 ions will be more readily adsorbed by BaS04 crystals than most
other ions because they fit into the BaSC>4 lattice. Many other examples
could be given.

But if ions of one sign are adsorbed at the phase boundary, ions of
the opposite sign will be attracted by the resulting electric field and ac--
cumulate also near the phase boundary. This accumulation of "counter-
ions" (Gegenions), however, will be counteracted by their Brownian mo--
tion. The result is the formation of an electrical double layer electrically
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neutral as a whole which may extend over a thickness of several hundred
Angstroms or even more. The structure of this double layer will be treated,
more completely in the following sections.

Electrophoresis involves a tangential motion of one phase with respect
to the other. It occurs only if the two phases carry free charges of opposite-
sign. Orientation of dipole molecules near the phase boundary, although
creating a potential difference between the two phases, cannot give rise-
to electrophoresis because the charges of the dipole cannot be separated
permanently by the applied electric field. So electrophoresis is intimately-
connected with the ionic part of the electrical double layer and any theo-
retical approach to electrophoresis has to start with a study of this elec-
trical double layer.

III. CHARGE AND POTENTIAL IN THE ELECTRICAL DOUBLE LAYER

A. Charge

As mentioned above, the total charge of the electrical double layer is,
zero, but in it ions and electrons may be accumulated preferentially by
adsorption. Analytical measurements allow in principle, although not
always in practice, the determination of the amount of ions of any kind
adsorbed at the phase boundary. Such measurements, however, do not,
yield any information on the distribution in space of these charge carriers^
But quite often relatively simple theoretical considerations come to our aid.
If it is known that, for example, electrons and sodium ions are accumulated
at the phase boundary between a metal and a salt solution, it is obvious;
that the electrons are present in the metal phase and the sodium ions in
the aqueous phase. We thus consider the metal to be negatively charged
with respect to the water phase, the amount of charge being given by the
charge of the excess electrons or by the charge of the sodium ions with
sign reversed. Further information on the spatial distribution of the charge
carriers demands more refined theories such as will be treated in Section IVS

Ionic Double Layer.

B. Potential

The spatial distribution of electric charge is of course connected with
an electric potential. The exact nature of electric potentials in and near
phase boundaries is, however, a subject with numerous pitfalls. Consider-
ing the potential difference between two points in space as defined by the
amount of work to be done in transferring a given charge from one point
to the other, the question immediately presents itself whether this amount
of work is independent of the material carrying this charge. We may
expect to find the same amount of work involved in the transport of a
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hydrogen ion from point A to point B in an aqueous solution as in the,
transport of a sodium ion between these same points. But, as soon as a
phase boundary is crossed these amounts of work are generally different
because, apart from the purely electrostatic work, configurational work,
also called chemical work, is performed in changing the immediate sur-
roundings of the sodium (or hydrogen) ion. This eonfigurational work
differs for H+ and Na+. Moreover, there are no means of separating the
chemical and the electrical work in an unequivocal way, and, as there is,
no good reason to prefer one charge carrier above the other, it seems as if
we do not have any way to determine the electrical work and thus the
potential difference between two different phases. The same difficulty,
although perhaps to a lesser extent, is valid for the determination of the
potential difference between two solutions of different composition.

C. Electrochemical Potential

Guggenheim (2) has repeatedly pointed out the impossibility of sepa-
rating the chemical and the electrical parts in the work of transporting.
ions of species i and has introduced the notion of electrochemical potential,
ij», composed of the chemical potential, /j,t, and a term z ftp, where 2,- is the
charge of the ion and <p the electric potential.

J?» = MÎ + zte<p (1)

In any actual transport process only electrically neutral combinations can
be transported. In that case the terms z^v add up to zero, and for electro-
neutral combinations

Still it is customary to use the notion "potential difference between two»
phases," and in order to see clearly what this may mean, we shall treat
briefly the galvanic cell.

D. Galvanic Cells

The electromotive force (e.m.f.) of a galvanic cell is theoretically well
defined; it is closely connected with the total chemical process in the cell
t§ee, Lg- ('">)], and measurable in an unequivocal way as the potential
difference between the leads connected with the electrodes. These leads are,
of the same material, and the potential difference measured between them
is thus independent of the charge carrier used.

On the other hand, the e.m.f. can be considered as the sum of the.
potential jumps occurring at each of the phase boundaries in the cell.
Although, as shown above, each of these potential jumps separately is
inaccessible to measurement, their sum is well defined. It is often possible.
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to vary one of the phases in the cell, e.g. by changing the concentrations
in a solution, in such a way that of the potential jumps at the phase»
boundaries involved only one is expected to be seriously affected. In such,
a case the change in e.m.f. corresponds directly to a change in the po-
tential jump at one single phase boundary.

The cell used for measuring the pH may serve as an example. This cell,
which contains five phase boundaries, can be described as follows:

Pt
Solution A containing
H+ ions and saturated
with H2 at 1 atm.

Saturated ; KC1, 0.1 M
KC1 ' saturated with

i Hg2Cl2
Hg Pt

1 2 3 4 5

If concentrations in the solution A are varied, only the phase boundaries 1
and 2 are affected. If solution A contains a relatively large amount of a,
neutral electrolyte, e.g. NasSOt, and a small concentration of a buffer
system, variations in the buffer system will practically not affect the-
diffusion potential at the liquid junction 2, but they will affect the po-
tential jump between platinum (Pt) and the solution, and this last change
is reflected in the change of the e.m.f. of the cell. Written as an equation:

A(e.m.f.) = A(%olution - <pPi) (3)

With the aid of equation (3) an arbitrary situation may be chosen as a
reference point. In a number of cases it is possible to determine the com-
position of solution A at which the two phases (Pt and A) do not carry free
charges. This situation is called the zero point of charge, or isoelectric point,
and is often taken also as the zero point of potential difference between the
two phases. Though this may be a useful assumption, it neglects the po-
tential difference that may exist between two phases as a consequence of
orientation of dipoles and polarization of atoms in the surface layers.

E. Galvani and Volta Potentials; x-Potential

Lange and Koenig [(4) ; see also (5)] have given a clear analysis of the
situation. Consider a condensed phase bounded by a vacuum. The electric
potential just outside the phase, that is, out of the reach of short-range
forces, is independent of the nature of the charge carrier which is used to
measure it and consequently practically accessible and well defined. It is
called the Volta potential (symbol </0 and plays an important role in electron
emission. A survey of methods for measuring Volta potentials was recently
given by Möhring (6).

The potential inside the condensed phase has been termed Galvani
potential (symbol <p) by Lange. It differs from the Volta-potential by an
amount x, the potential jump at the phase boundary:

v = * + x (4)
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Both <p and x depend upon the choice of the charge carrier. There are a
few theoretical calculations of the potential jump, x- They assume im-
plicitly the existence of a nonmaterial charge carrier and are essentially
calculations of the distribution of nuclei and electrons near the surface,
How uncertain they are is shown clearly in the large variation in calculated
X-potentials of water: Verwey (7) found 0.5 volts (water negative) for
the boundary water-vacuum. T^l'yanskiï (8) also concluded that the water
molecules are preferentially oriented with their positive sides to the surface.
Passoth (9), however, found 0.28 volts; Frumkin et al (10), 0.1-0.2 volts;
and Hush (11), 0.30 volts—all with water positive with respect to vacuum.

At the phase boundary of two condensed phases we distinguish the two
Galvani potentials <pi and <pn and their difference xi> n-

xi, ii = <PI — <pn (5)
The interfacial potential jump xi, n is not equal to xi ~ X? because the
molecules of both phases are rearranged at the interface as a consequence
of the contact between the phases (Fig. 1). Frequently xi, n is divided into

Là,

\-

VTzz-

FIG. 1. Diagram illustrating Galvani («?), Volta (i/O, and x-potentials.

two contributions: one to be called DI, n and based upon the distribution
of free charges, and the other to be called x (the x-potential in the re-
stricted sense) and connected with polarizations and orientations of neutral
molecules. At the zero point of charge Di, n = 0, but x usually has a
finite value.

F. Potential-determining Ions

If ions of type i occur in both phases and equilibrium exists, the electro-
chemical potential 17,, of these ions has the same value throughout the
\vhole system:
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ri,1 = -n,11 (6)
with equation (1):

(7)

Assuming phase II to be a solid with fixed composition (pure métal,
€>xide, sulfide, halide, été.) and phase I to foe a solution, dilute with respect
to the ions (f), jut

n is a constant, and

M,1 = G^)o + kT In ee (g)

where (MS')O is the standard potential erf i ions, e, their concentration in
the bulk of phase I, and k the Boltzmann constant.

Substituting this m equation (7) we obtain the Nernst equation (9),
which is seen to be valid not only for the potential difference between a
metal and a solution, but also for oxides or salts in equilibrium with
solution.

*./TT PT1

pi — 1̂1 = constant H -- In e, = constant H -- p In c, (9)
&•$ <v %F

The ions of type i, for which equation (9) is valid, have been called
potential-determining ions by Lange and Koenig (4). The Ba++ and SÛ4 —
ions in the system BaSC^-solution, eited in Section II above, are examples:.
of type i.

The x-potential (in the restricted sense) is only based upon short-range
forces. It may therefore be assumed to be independent of the distribution
of free charges near the interface. With this assumption, the double-layer
potential DI, n is found also to obey a Nernst equation:

f}fTI

DI n = <Pl — <pu — x = constant -| -- = In c, (10)
z,v

If the concentration of i ions is not very small, deviations from thé-
simple logarithmic equation appear. It is customary to correct for these*
deviations by introducing an activity coefficient in the logarithmic term,
but it should be realized that part of the deviations may just as well be
attributed to the liquid junction.

G. Oil-Water and Air-Water Interfaces

Let us consider the distribution of an electrolyte (monovalent for sim-
plicity) between two immiscible liquid phases (further denoted as oil and
water) in equilibrium. Equality of the electrochemical potentials of the
ions in both phases leads to
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çr:
ol + e<p° = (M+«')o + fcT In c+™ + <*,« (11)

and

(ALOU)O + fcT In c_oil - V1 = 0-")o + lîT In c_w - e<p« (lia)

By subtraeting the two equations (11) and (Ha) from each other and
taking int^aeeount that c+ = c_, «aie finds:

The Galvani potential difference is independent of the concentration
of electrolyte.

When the nonaqueous phase is a nonpolar hydrocarbon oil or air, the
electrolyte concentration in it is zero or is sa small as not to be sufficiently
well defined to influence the potential difference. The distribution of
charge and potential in the aqueous side of the boundary is in that case
governed by the difference in adsorption of the two kinds of ions at the
interface.

Incidentally the air-water interface is a good example of the determina-
tion of the Volta potential [see e.g. reference (12)]. If one electrode is placed
in the air close to the surface and a second one connected by means of a
saturated KC1 liquid junction to the aqueous solution, the potential differ-
ence between these two electrodes changes parallel to the Volta potential
of the solution. Adsorption of surface-active electrolytes and nonelec-
trolytes and spreading of amphipolar substances changes the Volta po-
tential markedly. This change in Volta potential is equal to a change in
the total x-potential as the Galvani potential may be assumed to be un-
affected by the small concentrations involved. The x-potential at the
water-air interface usually contains contributions from oriented dipoles
and also from free ions.

IV. IONIC DOUBLE LAYER

As stated in Section II, electrophoresis occurs only in the presence
of freely mobile charges. It is highly sensitive to the amount and spatial
distribution of these charges. Oriented dipoles and polarized molecules,
giving rise to the x-potential jump, do not lead to electrophoresis and for
our problems are important only insofar as they influence the distribution
of free charges in the ionic layers.

Our next aim will therefore be a closer study of the ionic double-layer
potential DI, n- Not to complicate matters unnecessarily, we shall pro-
visionally consider only double layers at flat (noncurved) interfaces,
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A. The Diffuse Double Layer

The ionic double layer consists of two layers of charges of opposite sign..
In most cases one of the layers is localized in a plane at the transition
between the phases, whereas the other one has the character of a space
charge, extending fairly far into one of the two phases.

In the mathematical treatment the first-named layer is usually repre-
sented as smeared out in a mathematical plane. This is not as crude an
approximation as it might seem to be, for often the surface charge is carried
by electrons or by potential-determining ions. They are not localized, so
that one might say that the excess charge is shared more or less equally
between all electrons or potential-determining ions near the interface.

In the beginning of the development of the double-layer theory, the
countercharge was represented as a space charge (extension not specified)
in Helmholtz' treatment of electrokinetics (13), as a surface charge by
Perrin (14), and again as a space charge, carried by dimensionless ions, by
Gouy (15) and by Chapman (16). Their treatment still furnishes the basis
of modern double-layer studies. Stern (17), Grahame (18), and others have
refined the Gouy-Chapman treatment by introducing finite size, hydration,
etc., of the ions. We shall first follow the Gouy-Chapman treatment. A
schematic picture of their double-layer model is given in Fig. 2, showing;

distance from interface
FIG. 2. Distribution of ions and potential in the diffuse double layer, omitting the

X-potential jump.

at the same time the potential distribution. The x-potential jump, which
ought to be superimposed on the double-layer potential as a sharp jump
near the interface, has been omitted; the surface charge is assumed to be
negative. Positive ions are attracted to the surface, negative ones are
pushed away. The average number of ions (i) per unit volume at a distance
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(x) from the interface n,(x) is connected with the average potential
by a Boltzmann equation :

(13)

where n,(œ) is the number of ions in the bulk of the solution.
In the treatment of properties of strong electrolytes where equation (13),

is also used, it has been criticized by Fowler and others (19); see also:
Onsager (20), Kramers (21), Fowler and Guggenheim (22), and especially
Kirkwood (23). The objection is that in the exponential z,eip(x) ought to
be the work done in bringing an ion to the distance (a;) . However, if it is,
known that the ion is at x, it will influence the distribution of the ions in
its neighborhood, so that the potential at (x) will deviate from the mean
potential ^(x). Casimir (24) has pointed out that application of equation
(13) is Justified when large particles or charged surfaces with very many
elementary charges are considered and when the electrolyte concentration
is not too high. The objections are quite valid in the theory of electrolytes,
where double layers (ionîe atmospheres) around separate ions are con-
sidered.

The potential distribution in the double layer is connected with the
space charge, p(x), by Poisson's equation (14). This equation is the mathe-
matical equivalent of the physical picture that 4-jr /e lines of force emanate
from an electrostatic unit of charge in a medium with dielectric constant e.

div [e grad $(x)] = —4:irp(x) (14)

If we assume « to be a constant (see, however, below) and remember that
in our model ^(x) changes only in the re-direction, equation (14) takes the
simple form:

The charge density is feuijlt up from the ionic charges or:

p(x) = VJ zten,(x) (16)
^

The relations (13), (15), and (16) can be combined into the so-called
Poisson-Boltzmann equation (17), which forms the basis of the double-
layer theory:

. , = > zßnt(y> ) exp r=
dx"- e ̂  F V kT

In the Deb3''e-Huckel theory of strong electrolytes the analogous equa-
is solved by expanding the exponentials, retaining only the first two.
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terms. This is a reasonable approximation provided zte<!/(x)/kT < 1 or-
\j/(x) < 25/2, millivolts at room temperature. Applying this approximation,
and taking into account the electroneutrality far from the interface

equation (17) is transformed into:

2 = K?il/(x) (19)

in which

«* = ^F (20)

The solution of equation (19)

exp (-KX) (21)
shows that I/K has the dimension of a length and denotes that value of x
for which \j/(x) = ^(0)/e, Therefore I/K is a good measure for the extension
of the double layer and is often called "thickness of the double layer."

In colloidal systems the application of the Debye-Huckel approxima-
tion (19) is frequently not justified. In the first place the underlying
assumption z,e$(x)/kT < 1 is mostly not fulfilled in the major part of the
double layer. Potentials in the double layer may be as high as several
hundred millivolts. Secondly, experiments on electrophoresis and on the
stability of colloids reveal a pronounced difference between the influence
of positive and negative ions. In equations (19) and (20), however, they
appear in a completely symmetrical way, whereas the complete expo-
nentials of equation (17) are indeed quite asymmetric with respect to
positive and negative values of Zff'o- It is therefore necessary to make use
of the complete equation (17) for colloidal systems.

A first integration may be carried out after multiplying both sides of

equation (17) by —j^' Making use of the boundary conditions

integration leads to

/dt(x)V _ OTTKJ. ^ -
\~dx~ ) ~~7~2^n^)(e - !) (22)

or for a solution of a 2+ — 2_ valent electrolyte

J — ~T* I ,» \i /> ICT _1_ v . a KT — y . — y ^"/
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where n = z+n+(x) = 2_n_(°°) is the concentration expressed in
mentary charges per unit volume. The plus sign is valid for a negatively
charged surface, the minus sign for a positive surface.

For a symmetrical z — z valent electrolyte equation (23) can be written:

_Z££Or)~|

— e 2kT (24)

The conditipn of electroneutrality in the whole system requires that any
plane parallel to the interface cut the double layer into two layers carrying
equal but opposite charges. Calling the sum of the surface charge <r at the
interface and the space charge between x = 0 and x, a(x), this condition
leads to

"p(x)dx (25)= -f

Using the Poisson equation (15) to substitute for p(x) and carrying out
the integration we find:

e d\[/(x)
4ir dx

(26)

FIG. 3. Potential in the diffuse double layer for various surface potentials and sym-
inetrical z-z valent electrolytes as a function of the distance from the interface.
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an equation which f or x = O relates the surface charge o- = a(x = 0) with
the surface potential ^o = ty(x = 0).

Although a second integration of equation (23) can be carried through,
at least when 2+ and z_ are equal or not larger than 2, the resulting equa-
tions are rather complicated and will not be needed here. Figure 3 gives a
graphical representation of the potential as a function of the distance from
the interface. In this figure the dimensionless units ze^/kT and KX are used,
which means, that the potentials are expressed in units of 25/z millivolts
and the distances in units I/K. The values of I/K can be calculated from
equation (20). For water at 25°C. and symmetrical z — z valent electro-
lytes, this equation can be written: I/K = 96/2Vc in which I/K is expressed
in Angström units and c in millimoles per liter. For monovalent electrolytes,
I/K is about 10 A. for 0.1 molar, 100 A. for millimolar, and 1000 A. for
10~6 molar solutions.

ow valency anct
oncentration

Jow valency and
^concentration

distance to
the interface

distance to
the interface

FIG. 4. The part of the double layer that is responsible for electrophoresis becomes
less important for higher concentration and valence of electrolyte, a. Constant surface
potential, b. Constant surface charge.

The fact that the double layer is thinner and the potential drop steeper
in more concentrated solutions and in solutions containing ions of higher
valency than in dilute ones is of great importance for electrophoresis.
There are many indications that in electrophoresis the first few layers of
molecules near the interface do not move and that electrophoresis is de-
termined by the outer part of the double layer. Figure 4 shows schemat-
ically how, for constant surface potential and (still more pronounced)
for constant surface charge, the potential at a distance x from the inter-
face is lower, the thinner the double layer. Consequently electrophoresis
will be slower, the higher the ionic strength.

Experimental checks of the double layer theory are usually based upon
the relation between surface charge and potential (equation 26). Extensive
data on the interface mercury-aqueous solution arg^ available through
electrocapillary work (18) and on the interface Agl-aqueous solution by
determination of the adsorption of potential-determining ions (I~, Ag+)



14 J. TH. G. OVERBEEK AND J. LIJKLEM1

combined with potential measurements on a cell with a silver-silver iodide
electrode (25, 26). Double layers on many other materials have been
investigated.

Equation (26) turns out to be valid only for low concentrations of
electrolyte, low potentials, and low charges. For higher charges equation
(26) predicts an exponential relation between charge and potential, whereas,
a more nearly linear relation is found. This discrepancy may be ascribed
to the finite size of the ions as was first clearly recognized by Stern (17).
Even at a concentration in the bulk of the solution as low as Koo molar
and a surface potential of 250 millivolts (mv), which is not extremely high,
the concentration of counterions near the surface is, according to the
Boltzmann equation,

_, , f&l>\ 1 250 mv or,_ ,
Cone, at surface = <;„ exp I jTf,} — 77:7; exp — = 220 molar\lcj. / 10U ÄÖ mv

—clearly an impossible value. For the innermost parts of the double,
layer, the Boltzmann equation can obviously not be accepted without
considerable corrections.

B. Influence of the Finite Size and Specific Properties of Ions
and Other Corrections of the Gouy-Chapman Theory

In the preceding paragraph it has been shown that the finite size of ions
necessitates corrections of the diffuse double-layer theory. These corrections
are much more important near the interface, where concentrations may
be high, than in the bulk of the solution. Stern (17) was the first to intro-
duce a correction of this kind by treating the adsorption of the first layer
of ions separately and using the Gouy-Chapman theory for the remaining
part of the double layer. In the first layer, electrical effects, size of the ions,
and specific adsorption could be taken into account, thus forming a basis,
for the explanation of specific differences between ions of the same valence
in their influence on electrophoresis, double-layer capacity, etc. A fine
elaboration of Stern's ideas was given by Grahame (18).

The Russian school (27-30) paid attention to the influence of the dis-
creteness of the charges in the Stern layer on the amount of specifically
adsorbed ions and the accompanying potential distribution. Recently their
results were confirmed and extended by Grahame (31, 32).

Bikerman (33) applied a number of corrections to the Boltzmann equa-
tion, one of them for ionic volume, thus automatically cutting out the

/- absurdly high concentrations that may occur m the Gouy-Chapman form-
^' fhVm. In addition he considered specific adsorption for the first layer of ions.

Parsons (34), while using the Stern approach, showed that the specifi-
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eally adsorbed ions, follow an Amagat equation rather than a Langmuir one.
Loeb (35) and Williams (36) took the Debye-Hückel interaction between»
the individual ions in the double layer into account.

Freise (37) treated the diffuse double-layer structure from the point of'
view of ideal mixing and found deviations from the Gouy-Chapman theory
which could be interpreted as a consequence of the finite size of solvent
molecules and ions.

Con way et al. (38), Hasted and co-workers (39), Grahame (40), and
Booth (41) considered the dielectric constant in the double layer. From
their investigations it appeared that the dielectric constant may be con-
siderably lowered in the strong electric field in the double layer. This change
in dielectric constant has, however, a relatively minor influence on the
relation between surface charge (<r) and surface potential ^0- Bolt (42)
concluded that most of the corrections in the diffuse part of the double-
layer are mutually compensating, so that for many practical purposes
they may be neglected.

This, however, is not the case for the correction for finite size and
specific adsorption of the first layer of ions. For these effects we shall apply
the Stern treatment as modified by Grahame.

The surface charge is again assumed to be smeared out in a mathe-
matical plane. The first layer of ions in the solution is found at a distance 5
from this plane. Beyond d the double layer follows the Gouy-Chapman
pattern. In Stern's own treatment there is some uncertainty as to how the
first layer of ions and the diffuse double layer connect with each other.
Grahame distinguishes two planes in the double layer, parallel to the
surface, which he denotes as the inner and the outer Helmholtz plane.
The outer Helmholtz plane lies at the distance of closest approach to the
surface for hydrated ions, still belonging to the diffuse double layer. In
the absence of specific adsorption, no centers of ions occur between the
outer Helmholtz plane and the surface charge. The inner Helmholtz plane
is the plane in which specifically adsorbed and presumably dehydrated ions
are found. The distribution of ions and the course of the potential according
to Grahame's picture are given schematically in Fig. 5, a for negative
surface charge without specific adsorption. Figure 5, b and c, shows the
situation as modified in the presence of weak and strong specific adsorption
of anions. In the last case, the specific adsorption is so strong, that not
only the charge of the diffuse layer is positive but also that of the wall.
Figure 5, d and e, shows cases with specific adsorption of cations. With
strong adsorption of cations, the charge in the diffuse double layer may
become reversed and electrophoresis would be directed to the negative pole.

Quantitative treatment of the case without specific adsorption is rather
simple. The double layer may be represented by a system of two condensers
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FIG. 5. Distribution of ions and potential in the double layer according to Grahame'
(18). a. No specific adsorption, b. Specific adsorption of anions. c. Strong specific
adsorption of anions. d. Specific adsorption of cations, e. Strong specific adsorption
of cations.

in series. The first one, the "molecular condenser," has the plane of the
charge on the wall as one of its plates and the plane 5 as the other one. Its
capacity can be written as:

C -^-^m — - -471-5

where e' is the effective dielectric constant in this layer. The diffuse double
layer has a capacity

Cd — = 5)

in which a = <rd (no charges between x = 0 and x = 5). The total capacity
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C is found from

= _
G Cm C d

(27)

and is also equal to the ratio of surface charge (<r) to total potential
drop (&,)•

The capacity of the diffuse part of the double layer can be calculated
as a function of the double layer charge a by means of equation (26). For

low charge it is equal to e/4ir -> but it increases strongly with increasing
K

potential.
Stern considered the capacity of the molecular condenser as a constant,

but Grahame has shown that it can be more satisfactorily treated as a
function of the surface charge, i.e. as a function of the field strength near
the surface. In order to determine Cm, Grahame (18, 43) applied equation
(27) to the double layer on mercury in aqueous NaF solutions. When the
electrolyte concentration is high, the diffuse part of the double layer is
thin (1/K small) and possesses a high capacity. Consequently, according
to equation (27) the total capacity is mainly determined by Cm. For this
reason Grahame used the total capacity of the double layer m l M NaF
to calculate Cm. Figure 6 shows the result obtained. Conversely with the

JO

28

26

.24

2?

2C

IS

16 -

O -04-03 -1.2 -1.6 -2.0 Volts
Potential relative to

zero point of charge

FIG 6. Capacity of the molecular condenser on mercury in 1.0 Af NaF solutions.

aid of Cm thus found, the total double-layer capacity in lower concentra-
tions of NaF can be calculated, supposing Cm independent of the electrolyte
concentration.
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In this way excellent agreement with experiments is obtained. Figure f
shows the calculated and experimental results for 0.001 M NaF.

Grahame (44) determined data for many other electrolytes. Similar
results have been obtained for the double layers on mercury in water by
Ross McDonald (45), G. and E. Darmois (46), Vorsina and Frumkin (47),,

-1.6 Volts.
retattve to

of charge

FIG. 7. Total capacity of the double layer on mevcury in O.OOi M N&F. Dashed
line calculated with equation (27). Solid line based on experiments (18, 48).

Watanabe et al. (48); on Agi in water, by Overbeek and Mackor (49, 50) ,t
and Lijklemn (26); on Ag:S in water, by Freyberger and de Bruyn (51)
and Iwasaki and de Bruyn (52) .

The picture so far developed already includes some specific effects.
The capacity of the molecular condenser (Stern layer) is expected to be
dependent on .size and polarizability of the ions, and thus to follow the
lyotropic order.

According to Grahame's data on mercury the capacity of the molecu-
lar condenser increases systematically with atomic number and valence
(that is in the lyotropic order) (53) :

Na+ Rb+ < Cs+

Ca++ < Sr++ ~ Ba++, etc.

The differences in capacity between different ions are so small that they
are distinguishable only with very accurate experiments.

Lijklema's work on Agi shows the following order for the cations

Li+ <K+ < Rb+ < NH4+ < Co++

~ Cd++ < Mg++ ~ Ba++ < La+++ < TH++++
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and for the anions

< ClOr < NOr < S04—

The effects on Agi, though still small, as shown for instance in Fig. 8, are
somewhat greater than those on mercury.

Although specific adsorption of ions is of rather common oecurren.ee>
there are only very few cases where a quantitative interpretation has been

'cmf

50

4Q

- /O

*/ O -/ -2 -J -4 -5

FIG. 8. Capacity of molecular condenser on silver iodide according to Lijklema (26).

made. A good example is the adsorption of Cl~ on mercury as investigated
by Grahame (18). If the mercury is sufficiently negative no adsorption of
Cl~ takes place (because it is repelled too strongly by the electric field).
But even with a weak negative charge on the mercury, Cl~ is already
adsorbed specifically; on positively charged mercury the Cl~ adsorption
is so strong that the charge of the diffuse double layer is also positive (see
Fig. 5c). This strong specific adsorption of Cl~ (and other halides) on
mercury is obviously related to the strong interaction between mercury
and halides in mercury halides.

Very obvious examples of specific adsorption are found in those cases
where adsorbed ions invert the sign of the charge in the diffuse double
layer. Many complex ions (Co-, Pt-complexes) and paraffin-chain ions
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have this property. In this connection it should be borne in mind that
such a charge reversal can never be brought about by purely electrostatic .
forces.

Paraffin-chain ions are specifically adsorbed at all interfaces between
water and other phases because the paraffin tail is "squeezed out" as a
consequence of the strong attractions among the water dipoles. This effect
is particularly evident at water-" oil" interfaces, where by "oil" we mean
any nonpolar or slightly polar organic liquid.

In the simplest cases the potential difference between water and oil
is determined by the distribution of an electrolyte between the two phases
(as treated in Section III, G, equations (11 and 12)). In such circum-
stances there will be a diffuse double layer in each of the phases and no
surface charge at all at the phase boundary [see Verwey and N lessen (54)].
Quite often the concentration of ions in the oil phase will be very low, and
the amount of charge in the double layer very small as well. Even a
relatively weak specific adsorption of ions at the interface will change the
picture to the familiar one of a surface charge at the phase boundary and a
space charge 011 its aqueous side.

An interpretation of the capacity of the molecular condenser in terms
of dielectric constant and distance between the layers of charges is as yet
hardly possible. A normal value for this capacity is 20 juK/cm.2. With
e' = e = 80 this would correspond to a distance 5 of 35 A. and with e' = 2
to 5 = 1 A. Both values are quite improbable, and the truth lies somewhere
in between—probably at a dielectric constant of 4 to 10 and a distance of,
2-5 A.

The lyotropic order for monovalent ions corresponds to a stronger
hydration for the smaller ions. Strong hydration implies at the same time
a high effective ionic radius (high value of <5) and a small dielectric constant,
both factors working in the direction of a small capacity. The large capacity
for polyvalent ions is more difficult to interpret. Among other effects one
should take into consideration that the lines of force spreading from a
polyvalent ion hit the interface on a larger area than those of a monovalent
ion. The lines of force will therefore pass regions relatively far from any
ion, where the water molecules are relatively free and the dielectric constant
is high.

This discussion shows that interpretation of the capacity of the molecu-
lar condenser is connected with orientation and fixation of molecules very
near the interface. Mackor (25) has pointed out that an equally valid
interpretation is based on variability of the x-potential. Indeed the seat
of at least a part of the x-potential is in the same layers of molecules that
form the dielectric for the molecular condenser. It is more a question of
convenience than one of principle how the contribution of these molecules^
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to the electric flelâ is split up between their influence on the x-potential
and on the dielectric constant of the molecular condenser. Mackor's way
of interpretation has the advantage that the dissymmetry in the capacity
at the two sides of the zero point of charge, which is nearly always found,
can be related to a preferential orientation of the water molecules at the
uncharged surface. More obvious cases of a shift of the x-potential are
found in the influence of electroneutral materials (acetone, urea, thiourea,
resorcinol) on double-layer properties. In preferential adsorption at the
interface such materials are as a rule oriented, thus causing an extra
potential difference between the two phases and a corresponding shift in
the zero point of charge. For example the zero point of charge for Agi in
water moves in the direction of lower I~ concentrations by addition of
acetone (55).

C. The Double Lttyer at Curved Interfaces

In actual electrophoresis of finite particles the interface between par-
ticle and medium cannot be completely flat. But if the radius of curvature
of the interface is much larger than the thickness of the double layer
(I/K), the treatment of the double layer at a flat interface (as given above
in Section IV, A and B) forms a very good approximation. However, for
small particles with a size of the same order as the thickness of the double
layer or even smaller, an explicit treatment of the double layer at curved
interfaces is desirable. There is a good deal of literature on spherical double
layers and a few articles on cylinders. It is typical for these cases that there
is relatively more volume available far away from the interface than close
to it. Consequently, those parts of the double layer where the potential
is low are relatively more important than the flat double layer and the
Debye-Hùckel approximation is more successful for curved double layers
than for flat ones. Going on to particles with a very small radius, this same
effect explains the success of the Debye-Hückel theory for electrolytes,
although potentials at the ionic surfaces are frequently higher than 100
millivolts.

1. Spherical Interfaces

The Poisson-Boltzmann equation (17)

div grader) = - ̂  £ «,(«),. exp (-^) W O?')

takes the following form for spherical symmetry

I d
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For low potentials Debye and Hückel (56) have given the following ap-
proximated solution of equation (28) :

t(r) = t(a) - <?<*-» (29)

in which a denotes the radius of the sphere. The surface charge density a
is then given by

dr

and the total charge on the spherical particle by :

Q = 4iroV = -ett^(o)(l + KO) (31)

Just as in the case of flat double layers it is insufficient for most purposes ,
to use only the first two terms of the power series and it is desirable to find
more precise solutions of the Poisson-Boltzmann equation (28). However,
an integration of the total spherical Poisson-Boltzmann equation in closed
form is not possible. Various useful elaborations are given in the literature.
In 1928 Müller (57) elaborated a procedure for numerical integration of'
equation (28) , or rather of the special form it takes for symmetrical elec-
trolytes. The number of solutions that have been worked out, however,
was insufficient to make the method of much practical value.

Gronwall et al. (58) and La Mer et al. (59) gave a solution of equation
(28) in the form of a series expansion in terms of the dimensionless quantity
z-e-/eakT for z — z valent electrolytes. Unfortunately only the first few
terms of the series have been calculated, the series converging only for low
values of the parameter; solutions based on these terms therefore are
acceptable only in cases of still rather low surface charge and potential.

Mikulin (GO) has shown that replacement of K by (K + constant •if') in
equation (29) leads to an approximate solution of the complete Poisson-
Boltzmann equation of rather wide acceptability. The method, however,
is rather laborious and still not quite exact.

The most practical way to solve equation (28) is found in the use of
electronic computors. This amounts to mechanizing the tedious procedure
of numerical integration so that solutions for a sufficient number of con-
ditions can be evaluated. Hoskin (61) introduced this method. His results
were for the greater part confirmed and extended by Loeb and associates
(62). The computer calculations by Wall and Berkowitz (63) on poly-.
electrolytes (see Section IV, D) also contain data on spherical double-
layers for high potentials. Hoskin's data cover the values zefa/kT = 1,2,
4, 6, 8 and KO, = 1, 3. 5, and 15. Loeb et al. extend these data to higher
potentials and smaller values of «a and give accurate approximations foe-
combinations of parameters not covered by the actual computations..
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By way of illustration we include Table I, taken from the work of
Loeb et al. (62), giving the surface charge density <r as a function of ze^o/kT"
and Ka.

A practical application of Hoskin's data can be found in the work of
Stigter and associates (64, 65) on surface potential, charge, and other
properties of soap micelles. Surface potentials appear to vary between 100
and 200 millivolts. Application of the Debye-Hüekel expression would
erroneously lead to potentials more than twice as high in several cases.

Combinations of diffuse double-layer theory around spherical particles,
with Stern corrections are as yet rarely used, but it is felt that in any case
0f practical interest, the quasi-flat Stern (or Grahame) molecular con-
denser may be combined with the spherical diffuse layer, because the thick-
ness of the Stern layer is so small (6 <5C a).

2. Cylindrical Symmetry

The distribution of ions in a diffuse double layer around a cylindrical
particle has been treated for the case of small potentials by Dube (66)
and by Gorin (67). Charge and potential are related through Bessel
functions.

Fuoss et al. (68) have treated the ease of infinitely thin rods surrounded
by diffuse double layers consisting only of ions with a charge opposite to>
that of the rods themselves. The ease is important for the behavior of
polyelectrolytes.

D. Double Layers around Polyelectrolytes

In the preceding sections we mainly considered systems in which the
surface charge is generated by adsorption. There are other very important
colloids in which the charge is formed by dissociation. These are nowadays
called polyelectrolytes, but they are more or less identical with what used
to be called hydrophilic colloids. Polyelectrolytes are molecules of col-
loidal dimensions containing a large number of ionizable groups like

O

—COOH, —NH2, >CP—OH, etc. Proteins are an example of this group.
One might be inclined to consider H+ and OH~ as the potential-

determining ions for these systems. The Nernst equation (9), however, is/
not followed exactly because the particles cannot take up an indefinite
amount of H+ ions and saturation plays a role. Or, more formally, the
chemical potential of the H+ ions on the particles is not a constant but
depends on the number already adsorbed.

The relation between charge and pH can be found experimentally by
titration. Titration curves are more complicated than those of simple
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electrolytes, mjainly on account of the mutual interaction amongst the-
eharged groups^

Consider a polyelectrolyte molecule with carboxyl groups. The dis-
sociation of the first few groups will give the molecule a negative charge,
which will hamper the dissociation of the following groups. The carboxyl
groups become more weakly acidic, the higher the degree of ionization.
As the interaction between different charged groups is partly screened off
by the ionic atmospheres around each of them, the interaction depends on
the ionic strength of the solution and consequently titration curves change
with ionic strength. At a fixed pH dissociation is stronger, the higher the
salt concentration. In addition the form of polyelectrolyte molecules is
often far from simple and not constant. If the polyelectrolyte is a long-
ehain molecule such as polymethacrylic acid its form in solution will be a

CH3 CH3 CH3 CH3

etc.—CH—CH2—C—CHr- C—CH2—C—CH2—etc.

COOH COOH COOH COOH
Pcdymethacrylic acid

loose coil, the shape of which is determined by statistics (69). The ex-
tension of the coil increases with increasing charge on the molecule as a
consequence of growing mutual repulsion between the charged groups.
The ionic strength affects the degree of swelling of the coil. A nonlinear
polyelectrolyte may be either more like a sponge or network, and also»
subject to swelling and shrinking, or it may be a more compact and rigid
structure as in many native proteins.

Only in the simplest cases are the charge-carrying groups all identical.
In most actual cases there are groups of different nature and even of
different sign present on one molecule.

No wonder that a theoretical treatment of the relation between charge-
and pH of polyelectrolytes is a complicated affair and, although a good
deal of work has been accomplished, the subject is far from closed.

For a review, papers by Katchalsky [see, for example, (70)] are recom-
mended.

An extremely rapid development in the field began in 1948 when
Katchalsky, Künzle, and Kühn (71), Hermans and Overbeek (72), and
Overbeek (73) presented their work in this field at a symposium in Liège
(Belgium) and Fuoss and Gathers (74) published a paper on polyvinyl
pyridinium compounds. In these early papers the three main aspects of
polyelectrolyte theory are clearly recognized. They are : (1) the distribution
of the small ions at given charge and configuration of the polyelectrolyte
molecule; (2) the relation of charge and configuration with pH and ionic

PAGE ABOVE ONE LINE SHORT
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strength; (3) the interpretation of experimentally accessible magnitudes
such as viscosity, sedimentation, light scattering, electrophoresis, etc.

1. Charge and Potential in and around Polydectrolyte Coils

The distribution of ions around a polyelectrolyte molecule differs from
that in the double layers (as described above) insofar that ^uite often
small ions penetrate within the polyelectrolyte molecule and that it surely
is not always permissible to consider the charge on the polyelectrolyte
molecule as smeared out.

A treatment that may serve as a good basis and allows a number of
refinements considers a coiled polyelectrolyte molecule as a rather open
spherical structure with a fixed charge smeared out uniformly in a sphere.
The distribution of small ions is thought to be governed by the Boltzmann
equation, which is valid both inside and outside this sphere. Outside the
coil the solutions of the Poisson-Boltzmann equation for spherical sym-
metry are valid; inside the coil this equation has to be modified as follows
to take the fixed charge into account :

,- j ,^ 4:Tre T-^ , , / 2,ei/<(r)
div grad t(r) = ~2^ n^ X exP \ f?

in which pa is the charge density of the fixed charges. The dielectric constant
e is assumed to have the same value as in the free solution. The integration
constants of the solutions inside and outside the coil have to be chosen ia
such a way as to avoid discontinuities and infinities, and so that the total
charge of the small ions just compensates the fixed charge of one coil.
Hermans and Overbeek (72, 75) solved these equations, using the Debye-
Hückel approximation. Kimball et al. (76) assumed the charge of the coil
to be completely compensated within the coil by a constant excess of
counterions and a deficit of co-ions just as in a Donnan equilibrium, no
double layer being present outside the coil, with a discontinuous transition
at the coil boundary. Although this model seems rather crude, it allows
the use of the unapproximated Boltzmann equation and it gives a better
approximation for the electrical potential within the coil than does the
treatment by Hermans and Overbeek. More refined solutions have been,
obtained by Osawa and co-workers (77), by Fujita (78), and especially
by Wall and Berkowitz (63), who solved equation (32) and the corre-
sponding equation (28) by using an electronic computer. Figure 9 gives
a comparison of three different solutions for a typical case.

Lifson (79) found an approximated analytical solution which in most
cases comes very close to that of Wall and Berkowitz and which may be
very useful for further work.

Other distributions than the homogeneous one for the fixed charge pa
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have been considered by several of the authors mentioned above. The
effect of replacing a homogeneous distribution by a Gaussian one appeared
to result in quite minor alterations.

Künzle (80), in order to be able to take the distribution of the charges,
along the chain better into account, assumed the ionic atmospheres around

/Or

S

FIG. 9. Radial potential distribution in a polyelectrolyte coil according to: 1. Wall
and Berkowitz (63) (exact solution). 2. Kimball et al. (76) (Donnan method). 3. Hermans
and Overbeek (75) (Debye-Huckel approximation).

the individual charges to be additive. Lifson (79) drew attention to the
important interaction effect between neighboring charges. As long as the
charge of the coil is rather low the charges will "avoid each other" and
the actual interaction will be reasonably well described with a smeared-out
distribution. When the charge density, however, is high and neighboring
sites on the chain are of necessity charged simultaneously, the nearest
neighbor interactions become quite important and have to be added
separately to the interaction with more distant charged sites.

2. Titration Curves of Polyelectrolytes

In the absence of interaction between the different charged sites of a
polyelectrolyte molecule, the titration curve can be predicted completely



28 J. TH. G. OVERBEEK AND J. LIJKLEMA

from the dissociation constants of the charged groups. In the simplest case,
namely with a single type of charged groups, e.g. C00~, the titration
curve corresponds to that of a monovalent acid.

The interaction among the charged groups and the small ions can be
expressed in terms of Fei, the electrical part of the free energy of the coil.
This quantity can be calculated from the distribution of charge and po-
tential in a straightforward way. In the Debye-Hückel approximation Fei
is equal to

A = \ f P^dV (33)

where the integration has to include a sufficient volume to include all
fixed charges.

The addition of one more elementary charge to the total fixed charge
dp

of the coil demands an amount of work, -r- '̂ where n is the number ofan
elementary charges of the coil. This amount of work has to be performed
in addition to the normal chemical work of dissociation of the charged
groups, and at this stage of dissociation the titration exponent pK is
therefore modified as follows

dFA/dn\
—

, .
(04)

or

pK = pK. + *ffi (34a)

Overbeek (73) treated this effect using the Debye-Hückel approximation
and applying it to the titration curves of gum arabic. From the experi-
mental titration curve Fei was determined and from Fei the size of the
molecule. The radius of the coil was found to be about 100 A. and to change
with charge and ionic strength as predicted. Of course, every refinement
used in the description of the double layer can be included in equations ,
(34 and 34a). In the titration curves of proteins these same aspects occur,
though in a more complicated way on account of the multitude of types
of charged groups. These aspects are treated in the chapter by Linderstr0m-
Lang and Xielsen in this volume.

V. ELECTROKIXETIC POTENTIALS

So far we have treated charge and potential near the phase boundary
but given little attention to their connection with electrophoresis. Charge
and potential are equilibrium properties; electrophoresis and electro-
kinetics in general introduce the aspect of a tangential movement of the
two phases along each other. The laws of viscous flow, which govern this
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tangential motioif, are well known, but there exists great uncertainty
about the actual value of the viscosity coëfficiënt, v\, in the double layer.
The viscosity will be larger than in the free liquid for t\\ o reasons : (a) the
high field strength; (b) short range interactions between the two phases,
at the phase boundary.

For solid or highly viscous liquid particles suspended in a liquid it is
customary to take these effects roughly into account by assuming the
existence of a "slipping plane," parallel to the actual phase boundary, but
displaced somewhat to the side of the liquid. The liquid is assumed to be
completely immobile between the phase boundary and the slipping plane,
but to have its normal viscosity beyond this plane. In accordance with
this view electrokinetic phenomena would be determined by the outer
part of the electrical double layer and more particularly by the potential
at the slipping plane, called the electrokinetic potential or ^-potential.

The electrophoretic velocity, U, is given by the following equation:

U = A-E (35)

Avhere E denotes the applied field strength ; « and i? the bulk values of the
dielectric constant and viscosity, respectively; and A is a constant, the

value of which is given as -r- by Helmholtz (13) and Smoluchowski (81),

J- by Hückel (82), and still other values by Henry (83), Booth (84),
Ö7T

Overbeek (85), and others.
Figure 10 shows that the f-potential is smaller than the potential ^0

slipping distance
plane

FIG. 10. Curves showing how the potential of the slipping plane decreases with
increasing electrolyte content or valence (1 = low, 2 = intermediate, 3 = high ionic
strength).
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at the phase boundary and that f decreases strongly with increasing
electrolyte content and valency, even when the surface potential remains
constant. Qualitatively this picture is in good agreement with experimental
facts. Streaming potentials and electroosmosis in glass capillaries [Freund-
lich and Rona (86), Rutgers and de Smet (87)] reveal that addition of
electrolytes, which affects i/^ (or the total potential difference between the
two phases) very little, nevertheless causes the f-potential to decrease-
markedly. Still it has not been possible to base a quantitative interpreta-
tion of electrokinetics upon this picture. Eversole and Boardman (88),
for instance, calculated the distance between the phase boundary and the
slipping plane from the electrolyte concentration-f-potential relations as
found by different authors. In some cases the results can be explained by
a constant thickness of the immobile layer, but the thickness varies be^
tween 8 and 100 A. from one series of experiments to another.

Lijklema (26) has suggested recently that the slipping plane might
be located at a given field strength in the double layer. Several authors
(89-93) have found the viscosity of a liquid to increase in high electric
fields. Andrade and Dodd (89) concluded that the increase in viscosity is
proportional to the square of the field strength

Utf f*T-to /Oß\— = fü* (oo)
•n

where E is the field strength in electrostatic units and ƒ (the "visco-
electric constant") is a constant of the order of 2 X 10~7 in organic solvents.
According to this relation the viscosity would increase markedly at fields
of to*"** volts per centimeter. These field strengths can be reached in the
double layer. Unfortunately no reliable data exist for water, but it would
certainly be \\ orth while to work out this idea in order to relate f with ^o-

In the present situation one should be cautious in identifying potentials
calculated from electrokinetic data with those derived from adsorption or
other thermodynamic measurements.

The situation is least unfavorable when potentials and electrolyte
content are low, so that high field strengths do not occur in the double
layer.

In the electrophoresis of proteins the first condition is met with often,
but the last one is not, and consequently it is uncertain whether one should
expect the electrophoretic charge and the adsorption charge or titration
charge to be identical.
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