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The electrophoretic velocity of a uniformly charged porous sphere m a salt
solution is considered to be composed of three contributions. These are.
1. a motion caused by that part of the charge which is exactly compensated

by counter-ions within the porous sphere.
2. a motion caused by the net charge of the porous sphere.
3. a motion caused by the counter-ions outside the sphere.

The influence of relaxation is left out of consideration. The presence of the
counter-ions is shown to lead to a relatively high degree of draining. In
solutions of high ionic strength, where the porous sphere model fails, poly-
electrolyte coils are shown to be freely drained and the application of Henry's
theory of electrophoresis of a cylindrical rod is discussed.

§ 1. Introduction.

In recent years the properties of polyelectrolytes, such as polyacrylic
acid, gum arabic and many others, have been the subject of experi-
mental and theoretical study. It is of considerable interest to investigate
the electrophoretic behaviour of these compounds.

The theoretical treatment in this paper is based on the porous sphere
model introduced by Debye and Bueche 1) and by Brinkman 2) in their
theory of sedimentation and viscosity of partially drained polymer
coils**).

*) N.V. De Bataafsche Petroleum Maatschappij.
**) When preparing this paper we learned that Hermans and Fujita3) and

Hermans4) have treated the same problem, using a different method. These papers
are discussed briefly at the end of § 2.

') P. Debye and À M Bueche, }. Chem. Phys. 16, 573 (1948).
2) H. C. Brinkman, Proc. Konmkl. Ned. Akad. Wetenschap. 50, 618, 821 (1947).
3 ) J. J. Hermans and H. Fu;ita, Proc. Konmkl. Ned. Akad. Wetenschap. B 58, 182

(1955).
4) J. J. Hermans, private communication.
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The polymer chain with Z elementary charges is replaced by N beads.
Each bead has a friction factor f and an electric charge Ze/N. The
beads are distributed evenly over a sphere with radius R. The density
of the beads is hence v = N/VsjiR3 inside the sphere and v = 0 outside
the sphere. The countercharge is found inside and outside the sphere.
Its distribution, assumed to be continuous, depends on p«R, H being the
reciprocal thickness of the ionic atmosphere as defined in the theory of
Debye and Hückel.

When the sphere is subjected to electrophoresis in an extraneous

electric field E, the velocity v of the liquid with respect to the beads
must obey the equations

—> —> —>
rjAv — grad p — yfv + pE = 0 ( 1 )

div v = 0
t] is the viscosity of the liquid, p the hydrostatic pressure and Q the
density of the countercharge.

The term —viv in ( 1 ) represents the force exerted by the beads on
the liquid and vanishes outside the sphere.

Assuming that the electric conductivity is the same inside and outside

the sphere, the applied field E is not perturbed by the sphere. Then the
condition for steady motion is

ZeE + JVvfdr = 0 (2)

In order to solve eq. (1 ) for v, with condition (2 ) , the density Q of
the countercharge must be known. We shall neglect the change of o
due to the relaxation effect and furthermore assume that the Debye-
Hückel approximation is valid. This enables us to use the results of
Hermans and Overbeek5). Their expression for the potential outside
the sphere can be cast in the form

with Zeff = Z

«r l + ''
n ii\R ..... (3)

j (l + « R)2 e-2*R - 1 + *2R2 j . . (4)

r is the distance from the centre of the sphere.
Eq. (3) represents the potential field around a solid sphere with

charge Zetfe. Obviously the effective charge Zeffe of the porous sphere
consists of the fixed charge Ze and a countercharge — (Z — -Zeff)e.

ƒ. ƒ. Hermans and ƒ. Th, G. Overbeek, Rec. trav. chim. 67, 761 (1948).
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For the following calculations this countercharge inside the sphere is
assumed to be smeared out uniformly. For the local density of the
countercharge inside the sphere we hence employ the average value

-_ (Z — Zeff)e , ,~

This approximation will be discussed later.
In the mathematical analysis the velocity of the sphere is put equal

to zero. The velocity of the liquid at infinite distance, — -u, then gives
->

the desired electrophoretic velocity u.
In order to solve eq. ( 1 ) the volume force

-» ->
— vfv + £>E

is split up into three components. Each component gives a contribution
->

to u, which can be written down immediately by using solutions of
related problems, in particular the sedimentation of the porous sphere
and the electrophoresis of the solid sphere.

The treatment of this model is straightforward. However, the con-
nection between the model and an actual polyelectrolyte coil is to some
extent arbitrary and introduces certain errors. One source of error is the
neglect of the microscopic inhomogeneities in the distribution of the
countercharge in a polyelectrolyte coil. Actually each charged monomer
is surrounded by its atmosphere of ions; these give rise to a local
Debye-Hückel-Onsager type of interaction, which increases with the
ionic strength. This interaction is not accounted for in the present theory
because both the countercharge and the beads are considered to be
smeared out. The range of validity of the model results will be discussed
and a different approach will be suggested for the case of high ionic
strength.

§ 2. The electrophoresis of the porous sphere.

In the evaluation of the liquid velocity the electric charges are divided
into the following parts:
1. The countercharge inside the sphere with a constant density p,

given by eq. (5), together with an equivalent part of the fixed
charge, with density — Q.

2. The remainder, Zefte, of the fixed charge.
3. The countercharge outside the sphere, total — Zeffe,

Each of these charge distributions is considered separately and their
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contributions to the liquid velocity at infinite distance, — ut, — u2 and
->

— us respectively, are evaluated, the sphere being at rest in all cases.
The electrophoretic velocity of the sphere is then found as

u = u + u + u.
-

1. The liquid velocity vt due to the first part of the charge should
satisfy the equations

j — vtv1 f gE = 0 . . . . . (6)
->

div Vj = 0

The driving force on the fixed charges, with density — Q, is equal to

- -

In view of eq. (2) we therefore also impose the condition

(Z — Zeff)e E + JVfdT = 0 ..... (7)

Inside the sphere the fixed and the mobile charges exert equal but
opposite forces on the liquid; outside the sphere no force is exerted.
Consequently the velocity and the pressure are constant, the first two
terms of eq. (6) are zero and the velocity is derived from the remainder
of eq. (6).

— viv1+~<3E=Q ....... (8)

With the aid of the definition for v and eq. (5) for Q eq. (8) is trans-
formed into

v, — _ (Z — Zeff)eE ....... (c)
Nf

The first part of the electrophoretic velocity is therefore

U, = (Z— Zeff)eE ....... (10)

Nf

or, in words, the velocity is the ratio of the total force on the fixed
charge to the sum of the individual resistances of the beads. There is
no interaction between the beads. With respect to this part of the motion
the sphere behaves as if freely drained.
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-»
2. The second part involves the driving force ZeffeE only.

-»•
The liquid velocity v2 should obey the equations

— grad p2—j»fv2 = 0 . . . . . (11)

with the condition
div v2 = 0

ZeffeE 4-J" v2vfdt = O (12)

The driving force is distributed uniformly over the beads as. for
instance, in the case of sedimentation. This case is identical with that

of the porous sphere subject to a sedimentation force ZeHeE. Con-
sequently the second contribution to the electrophoretic velocity is

*=M (!3)

where F denotes the friction factor of the porous sphere in sedi-
mentation.

For the case of sedimentation eq. (11) and (12) have been solved by
Debye and Bueche l) and by Brinkman 2). Their expression for F may
be written as

F 9 l - - tanh<r
N f — ^ 2 3 1 (14)

2<72 "
with

->-** (is)

3. The last component of the liquid velocity, vs, concerns the coun-
tercharge outside the sphere, with no force exerted inside the sphere.
The differential equations inside the sphere

fjAvs — grad p3 — vfvs = 0 (16)

div v3 = 0

are satisfied by putting v3 = 0 in this region.
Outside the sphere the differential equations are

. — grad ps = eE = 0 (17)

div v3 = 0
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Huckel») and Onsager?) 'have solved eq. (17) for thé electrophoresis
of a solid sphere. As argued above Q in eq. (17) is identical with the
density of the countercharge around a solid sphere with charge Zeffe.

u3 is thus equal to the electrophoretic effect on a (Zef(e) valent ion with
radius R, which is given by

U3 =
ZefteE *R

l+xl
(18)

Finally the electrophoretic velocity of the porous sphere is obtained by
adding the velocity terms of eq. (10), (13) and (18)

->
u ;

\ f i — ^-/e

NF
: | Zeff
+ F

Zef -%^eE (19)

It has been shown already that the factors Zeff and F can be expressed
in terms of the fundamental pcirameters Z, R, « and Nf.

tor
i '*

10

Fig. 1. Total charge inside the sphere as a function of xR.

«) E. /facie/, Physik. Z. 25, 204 (1924).
') L. On^a^er, Physik. Z. 27, 388 (1926); 28, 276 (1927).
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The effective charge is given in eq. ( 4 ) . Fig. 1 presents Zeff/Z as
a function of xR. For xR = 0 there is no countercharge inside the sphere
and Zef{ = Z. For xR = oo the total fixed charge is neutralised by the
countercharge inside the sphere and ZeH = 0.

Fig. 2. Friction factor of porous sphere as a function of degree
of drainage. Broken line: solid sphere.

The friction factor of the porous sphere in sedimentation is expressed
in eq. (14). In fig. 2 F/Nf is plotted against

For very large values of

2~~ Nf
6nt]R
~NT

the friction factor F approaches the free drainage value Nf. When

6nt]R

Nf
0

the porous sphere behaves like a solid one and F attains the Stokes value

Using the expressions for Zef£ and F, fig. 3 has been constructed, in
which the electrophoretic mobility is shown as a function of xR for
various values of 6mjR/NL The limiting values are easily recognized
with the help of the special cases of Zeff and F discussed above.
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Fig. 3. Electrophoretic velocity of the porous sphere
for various degrees of drainage.

a. For xR = 0 the countercharge is at infinite distance from the
sphere and has no influence on its motion. The velocity of the sphere

with friction factor F subject to the driving force ZeE is in this case

__
u-

-
b. For ^R = oo the treatment for ut can be followed with Zeff = 0.

The obvious result is

-" ZeE

The porous sphere behaves as if it were freely drained.
c. In sedimentation the sphere is freely drained when

In this case F = Nf and eq. ( 19) for any value of %R, gives
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-> ZeE
u — -

Nf
This shows that when there is no interaction between the beads in
sedimentation, there is no interaction in electrophoresis either.

d. The porous sphere becomes impermeable if

Nf
Then F = öyt^R, the term Z — Ze ff/Nf may be neglected with respect
to the other terms and eq, (19) converts correctly into the Hückel
expression for the electrophoresis of a solid sphere 6)

-> ->
'' _ ZeffeE __ t£E ...... (20)

6m?R(l+xR) 670)

There remains to be discussed the approximation in the distribution
of the countercharge inside the sphere.

For xR = 0 there is no countercharge inside the sphere, see fig. 1,
When %R = oo there is actually a uniform distribution of the counter-
charge inside the sphere with density g. In both cases eq. (19) is correct.

For freely drained spheres (case c above), u = ZeE/Nf irrespective
of the distribution of the countercharge (compare also § 3). In case the
sphere is impermeable (case d above) our approximation does not affect
Zefl and hence u is correct.

This shows that eq. (19) is correct in all limiting cases. For inter-
mediate values of ><R and of o^R/Nf eq. (19) gives results which are
slightly too high. This is because the approximation Q = Q in fact means
that some of the countercharge is shifted from the centre of the sphere
toward the surface, where its contribution to the electrophoretic effect
is less than nearer the centre.

In order to check eq. (19) in the intermediate range we have compared
it with the equation obtained by Hermans*), which involves an
approximation in the hydrodynamic treatment, but uses the correct
(Hermans-Overbeek) charge distribution. Eq. (19) gives slightly higher
results than Hermans' expression for large xR and large ozi^R/Nf and
slightly lower results in the other extreme. The differences are all within
5 %, which suggests that both approximations are suitable.

Hermans and Fujita 5 ) have dealt with the present problem without
using any approximation. Their final expression, however, gives
u < ZeE/Nf for some intermediate value of the parameters. This is
clearly impossible and further comparison must await a correction of
the rigorous treatment.
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§ 3. Electrophoresis of polyelectrolytes,
Equation (19) for the electrophoresis of a porous sphere has been

developed for polyelectrolytes with the provision that they are spherical
coils to which the Hermans-Overbeek distribution of the counter ions
applies. This distribution disregards the relaxation effect and the ionic
atmospheres around the individual ions attached to the coil. This
procedure is justified in solutions of low ionic strength, that is to say
for low values of x. If x is high, however, the interaction between single

Fig. 4, Schematic comparison of electrophoresis of porous

sphere and polyelectrolyte coils.

ions becomes an important factor, which is not taken into account by
eq. (19). The range of validity of eq. (19) is shown schematically in
fig. 4. The important dimensions are the radius R of the coil and the
radius a of a charged monomer, for which two examples are given. In
the range xa {{ 1 the local interactions discussed above may be neglected
and the porous sphere model is suitable. However, when 1/x becomes
comparable with a, the mobility of the coil will drop below the minimum
value ZeE/Nf found for the porous sphere and eventually tends to zero
with increasing x.

Although the porous sphere model has no quantitative value for large
x, the conclusion that for large K the system behaves as if it Were fully
drained remains valid for polyelectrolyte coils of arbitrary shape. This
can be demonstrated with the aid of a different model.

In fig. 5 the coil is pictured as a thread. Each section of the thread is
enveloped by a double layer of cylindrical symmetry.

Hydrodynamic interaction between different sections of the thread,
i.e. partial draining, is observed when the liquid velocity produced by,
say, section P reaches other sections, say, Q.

It follows from Henry's treatment of the electrophoresis of the
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cylindrical rod 8) that the liquid velocity produced by section P vanishes
outside the double layer enveloping P. Therefore, roughly speaking, the
overlap of the double layers around P and Q is a measure for the mutual
hydrodynamic interaction between these sections of the chain. Con-
sequently the coil will be freely drained in electrophoresis when the

Fig. 5. Schematic picture of coiled polyelectrolyte
chain with electric double layer.

thickness of the double layer is small compared with the average distance
of approach between various parts of the chain, that is to say if
x R » l .

It is anticipated that highly charged coils will always be nearly freely
drained for any value of xR, because electric repulsion between different
sections of the flexible chain will prevent significant overlap of the
respective parts of the double layer. The electrophoretic mobility of a
free drained coil is the same as that of the fully stretched and randomly
oriented chain. Hence one may in this case apply Henry's theory of the
electrophoresis of an uniformly charged cylinder8). For random orien-
tation the velocity of the rod is

-> *£ ->' r?u — £— E
ont/

Applying this equation to actual cases, the t, potential should be inter-
preted as the average potential along the stretched chain. It is obvious

-»
that 'Ç and therefore u is very insensitive to the chainlength provided
that I/« is much smaller than this length.

Fitzgerald and Fuoss 9) performed electrophoresis experiments on
poly-4-vinyl-N-n-butyl-pyridinium bromides and found no significant
difference between the mobilities of fractions of various molecular
weights. With partial draining one expects a small dependence of the

8) D. C. Henry, Proc. Roy. Soc. London A 133, 106 (1931).
») E. B. Fitzgerald and /?. M. Fuoss, ]. Polymer Sei. 14, 329 (1954).
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mobility on R (compare fig. 3) and hence on the molecular weight. Thus
it seems that the compounds investigated by Fitzgerald and Fuoss were
freely drained under the experimental conditions.

A final remark may be made on the f potential computed with Henry's
equation from experimental data. Alfrey, Berg and Morawetz 10) have
solved the Poisson Boltzmann equation for a system of uniformly
charged rods. Their application to polyacrylic acid shows that for
degrees of ionisation from 0.5 to 0.9 some 50 % of the counter ions are
accumulated very close to the surface of the rods for any value of x.
This means that in solutions of highly charged polyelectrolytes a large
fraction of the counter ions is more or less associated with the chain
and move along with it in electrophoresis. Hence the charge computed
from experimental values of f is in general much lower than the charge
as determined, for instance, by titration.

Amsterdam, November 1955.
(Received December 20th 1955).

I0) T. Alfrey, P. W. Berg and H. Morawetz, J. Polymer Sei. 7, 543 (1951).


