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THE DONNAN EQUILIBRIUM
J. Th. G. Oveé'beek

1. INTRODUCTION

When two coexistent phases are subject to the restriction that one or
several of the ionic components cannot pass from one phase into the
other, a particular equilibrium is set up, called Donnan equilibrium.
As a rule the restriction is caused by a membrane, permeable to the
solvent and to small ions, but impermeable to ions of colloidal size, and
therefore these equilibria are often called Donnan membrane equilibria.
The presence of a membrane is, however, not essential. In a gel or a
resin in which the structural component is charged, and even in a sedi-
ment of a substance like clay dissociating into very large and small ions
the equilibria are of the Donnan type.
The Donnan equilibrium has three important aspects, viz.

1. The unequal distribution of ions.
2. The osmotic pressure.
3. The potential difference between the phases.

.

The elementary theory of the Donnan equilibrium‘V for ideal solutes
is known well enough. As, however, electrolytes of colloidal size are
usually far from ideal, it is important to investigate how this lack of
ideality affects measurable properties. In the present article we shall
therefore lay particular stress on the quantitative treatment of non-
ideal systems.

2. EremenTARY THEORY

The conditions for the Donnan equilibrium are conveniently described
by means of the electrochemical potentials 7, introduced by GUGGEN-

HEMM ()
n; = p; + 2, Fy coee(1)

where p; is the chemical potential of the species 4, z; its valency (with
sign included), F the Faraday and ¢ the electrical potential of the
phase to which #; and p, relate.

In equilibrium the temperatire and the electrochemical potentials
of all the diffusible components are equal in the two phases, but the
pressures may, and as a rule do, differ:

1t =n? e (2)

where the two phases are distinguished by the superscripts ¢ and o
(inside and outside the membrane).
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ELEMENTARY THEORY
For ideal solutions these equalities can be written
#® -+ pv; + RT In ot 4 2, Fyt
' =ut+pv;, + BT Inaxp + 2,Fye  ....(3)
where it is assumed that the partial molar volume »; of all components
is independent of the pressure p. u,* is the chemical potential in the
standard state and z; the mole fraction of species j.

The equations (3) together with the conditions for electro-neutrality
(4) determine the state of the system completely.

Dzt = 0 = Xz, <.l (4)

Specializing now for a cc;mpletely dissociated uni-univalent salt, one
non-diffusible (e.g. colloidal) ion of valency z and the solvent w, we
obtain five equations

(& — )0, + Fly' —y) = RTIn 5 (5a)
+

(pi — p°o_ — F(zpi —_— y)") = RTIn Z——_: (5b)
- ... (5)
(pz _ po)vw = RTIn % (50)

zt—axitai=0 z°=2z°=2 (bd,e)

where the cation is indicated by -, the anion by —, the colloid ion by
z and water by w.
The distribution of ions is found by adding egs. (5a) and (5b)

zox°  (pf —p)oy +v) ... (6)

w it RT

When the concentration of the colloid ion is not too large, the pressure
difference p¢ — p° is so small that the right-hand side of eq. (6) may be
neglected. ] ‘

The distribution of ions can then be calculated from egs. (5d, e) and

(M)

il =00 A7)

or expressing in the same approximation the result in molar concentra-
tions ¢ instead of in mole fractions

ct.et = (c°)? ....(8)

ct—ecttz2ti=0 e (9)
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THE DONNAN EQUILIBRIUM

Here ¢ is the salt concentration outside the membrane. The osmotic
pressure follows easily from eq. (5¢) in the following way

) RT 2 RT 1 —2x
pPP—pP=—h-—-="—"In
Oy Xy ¥, 11—z iz i—u2t
RT
NT (x4 2t — 22 + z,%)
~ BT+ ct—2c4 ¢ ....(10)

which is simply Van’t Hoff’s expression.
The potential difference between the phases follows from eq: (5a) or
(5b) after neglecting the small pv terms
' RT ¢ RT_ c?
g = e n = In = Loee{1l
"P 1/)0 F n C_,_i F ln C__o ( )
For comparison with approaches to be introduced later in this article,
we shall give explicit equations for the extreme cases in which the
colloid concentration is very much smaller or very much larger than the

salt concentration viz. for zc, <€ ¢® and for zc, > ¢°. (We'drop the super-
seript ¢ for the colloidal ion.)

Small colloid concentration

The solution of egs. (8) and (9) including first order terms in —z(—;f is

c+z‘=co—z~gf ....(12)
. zC,
ct=ot 22 ...(13)

or, in words, half of the charge of the non-diffusible ion is compensated by
an excess of counterions and the other half by a shortage of the ions of the
same sign as the colloid, which we shall call the co-tons.

The osmotic pressure is equal to

pt — p* = RTe¢, ... (14)

and the Donnan potential to
; . BT =, (15
Y P = 2F ....{(15)

The osmotic pressure has the same value as would be caused by the
colloid ions alone.
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EQUILIBRIUM AND NON-EQUILIBRIUM PROPERTIES

Large colloid concentration

When zc, > c®, assuming that the colloid ion is positively charged we
have
(60)2

z

c+‘=(::)2 v (17)

et = 20, + ....(16)

The charge of the colloid ion is now nearly completely compensated
by an excess of counterions.
The osmotic pressure is .

Pt —p° = BT (z + 1), ....(18)

and thus not only the non-diffusible ions but also the counterions are
osmotically active.
The Donnan potential is given by
RT 1o %=

Vi = Yo = 5 o ....(19)

3. EQuimriBrioM AND NON-EQUILIBRIUM PROPERTIES

A clear distinction should be maintained between the distribution of
small ions and the osmotic pressure on one hand and the Donnan
potential on the other hand. The first two are thermodynamically
well-defined equilibrium properties.

The Donnan potential, however, can only be measured by intro-
ducing salt bridges into the two solutions and this adds irreversible
processes to the equilibrium system. If, instead of using salt bridges,
one would insert two identical reversible electrodes into the two
solutions, zero potential difference would be found because the whole
system would then be in equilibrium.

This fact, which has already been signalled by DoNwax and Arr-
MAND,® is the basis of the so-called “indirect method” for determining
the Donnan potential. Lors®: &) has remarked that the Donnan
potential is equal to the difference in pH between the two phases
multiplied by 58 mV and often preferred the two pH measurements
on the separate liquids to the insertion of salt bridges into the equili-
brium system. The principle of this method is illustrated in Fig. 1.
If the four electrodes (two hydrogen electrodes, and two salt bridges
with calomel electrodes) are inserted into the Donnan system there is
no potential difference between the two reversible electrodes, because
no work can be obtained from a system in equilibrium. Taking the
common potential of these two electrodes as zero, the Donnan potential
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THE DONNAN EQUILIBRIUM

is evidently equal to £, — &, and on-the other hand #, and &, are the
e.m.f.’s from which the respective pH’s are calculated. Consequently

Esusp. - Eequil. sol
RT]0-4343F

In soil and suspension chemistry this difference in pH (or in the
logarithms of the activities of any other ion) between a suspension and
its intermicellar liquid is known as the suspension effect (WIEGNER,
Parrmanx(®, (7, @), Recently its nature has formed the object of a

PHsusp, — PHequil. so1 = ....(20)

Donnon  potentiol

(/Z'T\AA )

£=o0 Ez

colloidal equilibrium
solution solution

.

J) = Electrode, reversible to one of the diffusible ions,
e.g. hydrogen electrode

= Saltbridge G‘atumted KC/) with calomel electrades.

Fig. 1. Direet and indirect measurement of the Donnan potential. Demonstra-
stration of equality of Donnan potential and suspension effect.

rather heated discussion (JENNY et al., MarsHALL, PEECH ¢f al.,
Eriksson, MyseLs, BaAscock and OVERSTREET, SOLLNER, OVERBEEK, .
Low(9-—20))‘

It will be clear that any conclusion on the Donnan potential can be
carried over immediately to the suspension effect and vice versa.

The Donnan potential has been defined as the potential difference
between the two solutions. The assumption that the Donnan potential
is equal to the potential difference between the two salt bridges, implies
that the liquid junction potentials are zero or at least of equal magni-
tude. As no independent means of determining potential differences
between phases of different composition exist, this assumption can
never be checked. Even if this is a reasonable approach for dilute
solutions of simple electrolytes, its application to suspensions containing
highly charged colloidal particles is open to doubt.

When considering non-ideal Donnan systems, the distribution of
ions and the osmotie pressure, although more difficult to calculate, still
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INTRODUCTION OF ACTIVITY COEFFICIENTS

remain equilibrium properties. In the case of the Donnan potential,
however, a detailed consideration of the two irreversible liquid junctions
will prove essential.

4, INnTRODUCTION OF AcTIviry COEFFICIENTS

. In most cases Donnan equilibria do not obey the ideal laws. This is
what we should expect considering that the non-diffusible ion is, as a
rule, a highly charged colloidal particle which necessitates the intro-
duction of large corrections for the deviations from ideal behaviour.
These corrections can be given in the form of activity coefficients as
has been done in a very rigorous way by DoNnaN and GUGGEN-
HEDM, D ’

Activity coefficients are introduced into equilibrium conditions of
the type of eq. (3) by changing all z, into f; . z, leading to:

#i* + p'; + BT In fixf + 2,y
= u® + p°v; + RT Infrap + 2, Fy* ....(21)
The condition of electroneutrality is unchanged
Tzt = 0 = Zzxp ol (4)

Using the same treatment as in section 2, these conditions lead to
the following equations.
For the distribution of ions we find instead of eq. (8):

1) 0

Jiiftesfe t = fLof o) ... .(22a)
or (fue et = (FL¥e)? ....(22b)
The osmotic pressure is given by eq. (23), which replaces eq. (10):

B Eg—v Fo',?

= gRT(c,* + c_* — 2c +¢,%) ....(23)

”w f wixwi

Here ¢ is the conventional osmotic coefficient. Instead of eq. (11) the
Donnan potential is given by:

) RT _ f.ec.°

wz —_ "I)o —_— __F hl +i +i

Fifey

Although the above equations are correct, they are of little practical
value unless theoretical estimates for the activity coefficients can be
given. An obvious approach for dilute systems is the use of Debye-
Hiickel activity coefficients. This has given satisfactory results in the
case of the Donnan equilibrium KCl — K,Fe(CN), with a membrane
impermeable to the ferrocyanide ion. This system has been investi-
gated by Doxvan and ALtMAND® and by Kamevama,®® who

63

... (29)




THE DONNAN EQUILIBRIUM

interpreted it with the help of LEwIs activity coefficients. HUCKEL(?
showed that the results could also be explained with the help of
Debye-Hiickel activity coefficients. Quite recently, Hirr(?4 has shown
that results®equivalent to the use of Debye-Hiickel coefficients are
obtained by the application of the McMillan-Mayer theory of solutions,
at least in the first approximation. -

These theoretical approaches may be useful in the case of a relatively
small non-diffusable ion or in the case of a swollen gel, where the fixed
charges are distributed more or less uniformly. There are, however,
serious drawbacks in the case of true polyelectrolytes where the
non-diffusing charges are concentrated in a number of small spaces so
that even with very great dilution of the polyelectrolyte molecules, the
local concentration of ions remains high, close to the particle, and
renders application of Debye-Hiickel or similar theories impossible.

Instead of basing theoretical estimates of the activity coefficients on
small departures of homogeneity as in the theory of DeByEand HUCREL,
a more promising approach is obtained by taking explicitly into account
that the charges are concentrated in the colloidal particles. Such an
approach has been given by Davis,®® and more completely, by
KraarRENBEEK2® and will be treated in the next section. A short

account of KLAARENBEEK’s work has been given by the present author
in Kruyr’s Colloid Science.2?

5. ApproacH Basep vroN DETAILED CONSIDERATION OF
TeE UNEQUAYL DistrIBUTION OF IoNS 1IN THE JoNIC

ATMOSPHERES
5.1 Theory

As mentioned in section 4, the application of the Debye-Hiickel
approximation to the Donnan equilibrium often fails, because, for the
high concentrations of ions close to the colloidal particles the substi-
tution of (1 — ey/kT) for exp (— ey/kT), as used in the Debye-Hiickel
theory, is not valid*.

In the Gouy-Chapman theory of the electrical double layer, as
applied in the theoretical treatment of the electrocapillary curve
(GramamME®®), and in the theory of the stability of colloids (DEer-
JAGUIN and LaNDAU,® VERWEY and OVERBEEK®Y), this approxima-
tion is not used but the full exponential is preserved. It is worth while
to do the same for the Donnan equilibrium.

5.2. Qualitative treatment for the distribution of ions

In a Donnan equilibrium the counterions are concentrated in the inner
solution, and the co-ions are driven away from it. In accordance with

* Here ¢ is the ionic charge, y the local electrical potential, » BoLTzMANN’s constant
and 7' the absolute temperature.
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TUNEQUAL DISTRIBUTION OF IONS IN IONIC ATMOSPHERES

- eq. (21) this is understood as a consequence of the equality of electro-
chemical potentials in the two phases. The difference in electrical
potential (y? — ¢°) between the two phases entails a corresponding
difference in the concentrations of all the diffusible ions. . In eq. (21) it
is implicitly assumed that the electrical potential may be considered as
uniform in each of the two phases.

It is now proposed to take the variations of the electrical potential
in different parts of the suspension into account. This amounts to
applying eq. (21) locally to each volume element, instead of to the
average of the whole inner or outer phase.

In other words, in the classical treatment the average concentration
of ions is assumed to be related to the average electrical potential,
whereas we are now relatirig the local concentrations to the local
potentials, the averages being taken later.

The local concentrations, e.g. in the immediate neighbourhood of a
colloidal particle, are given by the BoLTzMANN theorem.

c, = cexp (— Fy/RT); c_= c®exp(+ Fy/RT) -....(25)

where ¢, and c_ are the local concentrations of the cations and the

anions respectively and y is the local potential. ¢° is the concentration

of ions in the outer solution. The BoLTzMANN expression (25) can be

regarded as the solution of eq. (21) or rather of eq. (3) when the local

activity coefficients are all equal and the small pv terms are neglected.
The average concentrations of ions are:

¢, = ¢ exp (F Fy/RT) ....(26)

and this is only equal to the concentration calculated with the average
potential

¢, = ¢ exp (F Fy/RT) ....(27)
when the electrical potential is everywhere small enough to permit the

repla,cement of exp (x) by (1 —|— x).
If y is very small

ci = ¢ exp (; Fy/RT) = (1 F Fy/RT)
= ¢ (1 F Fp/[RT) = ¢ exp (F Fy/{RT) ...-(28)

If, however, the potential is high in the neighbourhood of the colloidal
particles—and this occurs when the particles are highly charged and
the ionic strength is low—then the accumulation of counterions is
larger and the expulsion of co-ions smaller than corresponds to eq. (28).
As the high potential close to the particles is nearly independent of the
particle concentration, this dissymmetry persists even in the case of very
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THE DONNAN EQUILIBRIUM

small colloid concentration, whereas acéording to the classical treatment
the excess of counterions and the deficit of co-ions are the more nearly
equal the lower the colloid concentration (cf. section 2). Fig. 2 illustrates
the two cases.

P

AVRARNRSN

conc conc

counter ions

NN

counter ions [-]

co-ions

co- io);s
——— ————
o distance o distance
A 8
Fig. 2. Distribution of ions in the field of an electrically charged particle.
A: for high potentials (Fy/RT > 1). B: for low potentials (Fy/RT < 1).

5.3. Qualitative treatment of osmotic pressure - :

In the classical treatment the osmotic pressure is determined by
¢, + ¢ — 2¢° + ¢,. When the inhomogeneity in the ionic concentra-
tions is considered as in the foregoing subsection, one should consider
that the pressure varies with the distance from the colloidal particles,
the pressure being highest near the particles and lowest in certain

Fig. 3. Schematic representation of the course of the potential
between two particles.

symmetry points midway between the particles. Eq. (3) or (5¢) but
now applied locally, allow the pressure to be calculated. The high
pressures are partially counteracted by the stresses in the electric
field and only in the symmetry point where the field strength is zero,
may the pressure be considered as an osmotic pressure. In these
symmetry points the potential still has a finite value (y,,) as shown
schematically in Fig. 3. The pressure can then simply be calculated by
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UNEQUAL DISTRIBUTION OF IONS IN IONIC ATMOSPHERES

Van't Hoff’s expression, which can be transformed with the aid of
BoLTzMANN’s theorem.

p™ — p° = RT(c.,™ + c_™ — 2¢°)
= RT¢ {exp (Fy,/RT) + exp (— Fy,/RT) — 2} ....(29)

where the index m stands for the symmetry points.

The osmotic pressure (rather, the contribution of the diffusible ions
to the osmotic pressure) should be found by averaging expression (29)
over all possible configurations. If the particles are not highly charged,
so that mutual repulsion may be neglected, this averaging should lead
to the classical value for the contribution of the small ions to the
osmotic pressure

$ — p° = RTc{exp (F§/RT) + exp (— F§/RT) — 2} ....(30)

If, however, the charges are high, the particles repel each other and
approach a more lattice-like arrangement where the mutual distances
are more or less identical and all p,’s are about equal, eq. (29) immedi-
ately giving the ionic contribution to the osmotic pressure. '

As y,, in this regular arrangement is evidently smaller than the
average value of the potential, the actual osmotic pressure is lower than
the one calculated from average ionic concentrations. Experimentally
this fact is known as the HaAMMARSTEN effect. 3D, (32

5.4. Quantitative treatment of the distribution of ions

In order to give an accurate quantitative treatment based on the
above ideas it would be necessary to take account of form, size and
geometrical arrangement of the colloidal particles. As this is evidently
beyond our actual powers of calculation, some approximation in this
respect is necessary, but it is essential to conserve the possibility of
using high values of the electrical potential. The most extensive
treatment of the ionic abmospheres in the case of high potentials has been
given for large flat faces. We follow therefore KLAARENBEEKs(26), (27)
idea of representing the particles in a Donnan equilibrium as bounded
by flat faces, neglecting any end effects.

In the first place we shall treat solutions, which are very dilute with
respect to the colloidal particles, so that overlapping of double layers
can be neglected. In this case the relative differences in the concentra-
tions of ions in the two phases are very small. Instead of describing the
distribution of ions by the ratio of the concentrations in the two
phases, it can be more conveniently expressed as the fraction of the
charge of the colloid that is compensated by an excess of counterions
or by a deficit of co-ions respectively. This excess and deficit can be
found by integrating the local concentrations over the available volume
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"THE DONNAN EQUILIBRIUM

and subtracting the bulk concentration taken over the same volume.
The total charge is found as the sum of deficit and excess.

Consequently the fraction of the charge compensated by an excess
of counterions, o, is equal to

fom[exp (— Fy/RT) — 1)d=

| toxp (— FosRT) — oxp (BRI

.(31)

and similarly the fraction compensated by a deficit of co-ions, «_, is
given by -

j [1 — exp (Fy/RT)]dx

.(32)
f [exp (— Fy/RT) — exp (Fy/RT)}dz

where x represents the distance from the plane face of the particle.
The particles are considered to be negatively charged and consequently
v is always negative.

The integrations are straightforward and relatively simple when it
is assumed that the electrical double layer is of the Gouy-CEAPMAN
type®®: 30 (cf. VERWEY and OVERBEER®D),

The distribution of charges in the double layer obeys the Poisson-Boltzmann equation
d¥p 4nFc
Fr il {exp (Fy[RT) — exp (— Fy[RT)] ... .(83)
where ¢ is the electrolyte concentration far from the particles and ¢ the dielectric
constant of the solution.
" A first integration leads to

dy 8ncRT
= A/ —— [exp (Fp/2RT) — exp (— Fy/2RT)] ... .(38)

where the fact that dy/dz = 0 at infinity has been taken into account. The proportion-
ality between the surface charge density o, and the field strength as given in eq. (35)

G (dw) 35
h 4w\ dz/ surace - (38)
leads to a simple relation between surface charge g, and surface potential .
ecRT
o= e {exp (Fyo/2RT) — exp (— Fy,/2RT)] ....(36

where 1, is the potential at the surface of the particle, i.e. at z = 0 while the potentia
is assumed to be zero at infinity.
The integral in eq. (32) for the co-ions can be transformed as follows:

(1 — exp (Fy/RT)] ,

f [1 — oxp (Fy/RT)] dz = f i

68

(37



UNEQUAL DISTRIBUTION OF IONS IN IONIC ATMOSPHERES
Substituting dy/dz from eq. (34) we find

*[L — oxp (Py/RTY] | v 1 — exp (Fy[RT) ay
v dp/dz = 81rcRT exp (Fy[2RT) — exp (— Fy[2RT)

RT
A/f;,,cRTf exp (Fy[2RT)dy = A/28717’ [1 — exp (Fy,/2RT)] ....(38)

The integral in the denominator is handled similarly, leading to

o
fo [exp (— Fy/RT) — exp (Fy[RT)ldx

_—

sRT
= Jz 7 [exp (— Fuyof2RT) — exp (Fy/2RT)] ....(39)

The fraction of the particle charge compensated by a deficit of co-ions
is thus
exp (Fyof2RT) — 1

" exp (Fyo/2RT) — exp (— Fyo/2RT) --(40)

For very small values of the surface potential this fraction is equal to
% in agreement with Fig. 2B, but for larger values of y,, i.e. for more
highly charged particles, it decreases as shown in Table 1.

TABLE 1
Fraction of or-ions expelled (x_) as related to the surface potential y,

Fyo Po*
RT | n millivolts

0 0 0-50
1 25 0-38
2 50 0-27
4 100 0-12
8 200 0-018

* Ar room temperature, -1?1;-1 is close to 25 millivolt.

According to the elementary theory treated in par. 2 the fraction
always goes to z. when the colloid concentration is lowered sufficiently
(cf. egs. 12, 13. In the present treatment the distribution remains
asymmetrical, even at very high dilution.

5.5 Higher concentrations of the non-diffusible ions

Considering now higher particle concentrations where the double
layers overlap significantly, we have to treat the case of two flat
parallel faces carrsing double layers as pictured in Fig. 3.

69



THE DONNAN EQUILIBRIUM

The overlapping of the double layers obviously makes the absolute
value of the potential higher and cuts off the low potential tail of the
double layer. Consequently the average values of exp (F+ Fy/RT)
become more extreme and the fraction of the particle charge compen-
sated by the counterions will be larger, that compensated by the
co-ions smaller. Qualitatively, the change is in the same direction as
in the classical treatment; quantitatively it is less pronounced, because
considerable interaction of double layers with high surface potentials
is necessary before significant changes in the distribution of ions occur.

For a quantitative treatment we start again from the Poisson-Boltzmann equation
(33). A first integration now leads to

d 8ac BT -
d%'f —A/ ”Ce V2 cosh Fy/RT — 2 cosh Fy, [RT ....(41)

' d
where the boundary condition d%f = 0 half-way between the plates has been used.

The total counter charge (— o) per cm? of the double layer in one-half of the space
between the two particles is given by

g [d e RT
—o= ( "’) - J V% cosh FypgJRT — 2 cosh FpnJRT  ....(42)
7 surface 2
The part of the total counter charge formed by the expulsion of co‘ions can be written
Fe
== (1 — exp Fyp/RT)dz ....(48)
0

dy
After substituting ——— Ipjdn for dx this integral can be transformed into:

¢cRT [ FenlBT —1
o ~~J j e — Jy L. (44)
pojrr V2 coshy — 2 cosh (Fy,/RT)
The solution of the integral can be given with the aid of elliptic integrals, leading to
z—-a z—e

o = [{E(e®, w[2) — B(e, axcsine 2 )} — (1 — e?){F(e% uf2) — F(etarcsine 2 )}]
h e Vet L em? — g3 — g0

. .(45)
where o = Fy,[RT, z = Fy,[RT, F(k, ¢) is an elliptic integral of the first kind and
E(k, ¢) is an elliptic integral of the second kind in the notation of JAaNge and EMpE, 33

An application of these relations to the Donnan equilibrium demands
the knowledge of y,, and y,. These potentials are related through the
charge density as expressed in eq. (42). If we assume the charge density
to be a given quantity, one further relation is necessary. In principle
this relation can be derived from the concentration of the colloid. This
determines the distance 2d between the plates, and by a second integra-
tion of eq. (41) a relation between vy,, vy,, and 2d can be established.
However, KLAARENBEEK®® felt that this might stretch the rather

rough model too far and he therefore derived y,, from the experimentally
determined osmotic pressure.
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Eq. (46) shows how vp,, is related to the osmotic pressure (cf. eq. 92).
p — p° = RTc[exp (Fy,./RT) + exp (— Fy,/RT) —2]....(46)

With p,, and ¢ known, y, can be calculated from eq. (42) and all the
data necessary to evaluate «_ are given.

5.6. Strong interaction of double layers

If the particles come very close together the potential drop between
yp, and y,, becomes smaller and smaller as illustrated in Fig. 4. This
means that the local concentrations of ions are not very variable and
that we are again back at the classical Donnan situation, where distri-
bution of ions, osmotic pressure and Donnan potential are simply

Fig. 4. Illustrating schematically that the range of potentials between two
particles becomes relatively smaller, the closer the particles are together.

given by the elementary equations as treated in section 2. It is remark-
able that the new treatment of the Donnan effects may deviate strongly
from the classical treatment when the colloid concentration is low, but
not when it is high.

5.7, Activity coefficients

It would be possible to calculate activity coefficients corresponding to
the treatment given in this section, but such a caloulation would have
no great advantages. Activity coefficients are introduced in order to
give account of deviations of classical laws. They are strictly empirical
quantities. As soon as a theoretical explanation is put forward the
introduction of activity coefficients does not throw any fresh light on
the problem.

5.8. Experimental data
The theoretical picture outlined in the preceding sections, has been
drawn in order to explain a number of deviations from ideal behaviour.
Of the existing experimental data, those of KLAARENBEEK?® on the
Donnan equilibrium of gum arabic with KBr are best suited to test the
theory and to show its advantages over the classical approach.
- KraArENBEEK used solutions of Na arabinate(®® with a molecular
weight of about 200-000 and an equivalent weight of 1180. Potassium
bromide was used as the diffusible salt because the Br— ion can be
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determined relatively easily. KLAARENBEEK determined the distribu-
tion of ions by measuring the Br— content inside and outside the mem-
brane, the osmotic pressure and in a number of cases the Donnan
potential. His results on the distribution of ions can be most easily
expressed as the amount of Br— expelled.:. cf. eq. (40).

The drawn curves in Fig. 5 are experimentally determined lines.
The dotted lines are valid for ideal behaviour or for equal mean activity
coefficients in the two phases. It is seen that, especially at the lower
concentrations of KBr, the deviations are striking. They do not
disappear with diminishing concentrations of gum arabic. This fact,
that even at very high dilution of the colloidal particles the Donnan
theory for ideal behaviour is not followed, is one of the wstrongest
indications of the necessity of considering a dilute solution of a colloid
as & number of islands of high concentration of ions dispersed in a
solution of a much lower concentration, rather than as a completely
homogeneous system.

The experimental slopes at zero gum arabic concentration in 0-001,
0:01, 0-1 and 1 ¥ KBr solutions are 0-11; 0-19; 0-32 and 0-50 g eq.
Br— expelled per g eq. gum respectively.

Using eq. (40), these slopes allow the calculation of the surface
potential and with the aid of eq. (36), of the apparent surface charge
density.

TABLE 2

Surface Potential and Surface Charge Density of the Gum Arabic
Particles as calculated from the Distribution of Ions

Conc. of KBr | g eq. Br- expelled Surface Swg:,ce ¢ harge

in g eq. peér per g eq. gum potential ¢ mnf?u

litre arabic P tnmV e
per cm

0-00108 0-115 102 — 4300
0-01 0-19 72 — 7100
0-1 0-32 37 — 8700
1-0 0-50 (0) (0)

The order of magnitude of potential and charge density is not
unreasonable; neither is the fact that the potential decreases and that
the charge density increases with decreasing concentration of salt
{the value 0 for ¢ at the highest salt concentration is extremely sensitive
to error in the analytical determination).

Considering for a moment the gum arabic molecule (M.W. 220-000,
Equiv. W. 1180) as a spherical particle with 185 elementary charges,
a charge density of 7000 e.s.u./cm? would correspond to a surface area
of 1-3 x 107! or a radius of 10—° cm, which is quite a reasonable figure,
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corresponding well with a value of 1-1 X 10~%cm from diffusion
(Bruins®™) and of about 10~¢ em from titration curves (OVERBEEK (39)),

conc gum arabic
n 107 eq//

0 - /0 20 30 40

T T T
QN T - Tooom

Bromide ion
expelled in §

IO’3eq/1

70

/5

17T I rr7r1r1rrrrrrrrarTT

20

Fig. 5. Expulsion of Br- ions in the Donnan equilibrium between gum arabic
and KBr for four different concentrations of the outside solution. The experi-
mental curves are drawn. The dotted curves represent ideal behaviour.

The curves for 1 N and 0-1 N KBr are practically straight lines,
indicating the absence of measurable overlapping of double layers.

conc gum arabic

in m egft
0 2 4 6 8 10 [2 14 6
el 1 1 |

Bromide ion ;.1\ o measured
expelfed in "1\ \Q x calculated
m eqf! 04 ! N -~Donnan theory for

05— Ne ] rdeal behaviour

0.6 — ™

0.7 N !

08 - S

~ . O

0.9 ~ L

1.0 i

1.1

Fig. 6. Expulsion of Br- ions from solutions of gum arabic with 0-00108 N
KBr, as measured (0), calculated from eq. (45) { X ), and calculated for ideal
behaviour (dotted line).

The curvature of the 0-01 N and 0-001 N lines indicates that at higher
ooncentrations of gum arabic some interaction of the double layers can
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be detected, resulting in a still smaller expulsion of co-ions. Quanti-
tatively this should be explained by the theory as indicated in section
5.5. It has been mentioned there already that given the difference
between the model (fat faces) and the actual situation (coiled mole-
cules), a straightforward calculation of the effect of higher concentrations
of the colloid is hardly possible. KLAARENBEEK has therefore calculated
the value of the potential half-way between the plates, from the osmotic
pressure with the aid of eq. (46), and assuming a surface potential
independent of the concentration of gum he has calculated the amount
of co-ions expelled. Numerical data are given in Table 3 and shown for
0-001 ¥ KBr in Fig. 6. The good agreement between calculated and
experimental values is another indication that although the medel may
be rough the line of thought indicated in this section merits serious
consideration,
TABLE 3

EBxperimental and Calculated Values for the Expulsion of Co-ions at
Higher Concentrations of Gum Arabic

‘ Br- ton expelled in
Osmotic Potentia% Surfaf:e geq. P;: (g) :Z gum
Eq. conc. gum | pressure half way in. | potential | .
Cone. KBr . . mV calcu- n mV
arabic n cm i
H.O lated with (from Calculated
2 eq. (46) Table 2) from Found
eq. (45)
0-00108 N 1-4 x 103N 0-3 2-8 102 0-119 0-118
. 2.7 " 1-9 6-8 " 0-116 0113
”» 20 » 8-7 14-6 » 0-108 0-099
”» 81 ' 32-9 277 s 0-080 0-087
. 141 . 127 39-2 . 0-071 0-060
0-01 N 2-7% X 103N 1-35 1-8 72 0-197 - 0-17
»» 5-5 v 2-1 2-2 5 0-185 .| 0-193
» 110 " 6-5 4-0 ’ 0-194 0-192
» 20-3 " 23-8 7-8 » 0-189 0-181
» 30 ' 741 13-6 . 0-176 0-170

6. THE DONNAN POTENTIAL

6.1. On the location of the Donnan potential

It has already been mentioned in section 3, that the Donnan potential
and the e.m.f. connected with the suspension effect are identical, and
that saturated KCl bridges play an important role in their measurement.
In the usual interpretation of this measurement the liquid junctions
with saturated KCl are assumed to be potential free, or nearly so, the
measured e.m.f. being located nearly exclusively at, or in the membrane
between the two Donnan phases. It is, however, by no means certain
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$hat the diffusion potential between saturated KCl and a colloidal
golution or a suspension is small. In a liquid junction between saturated
/KCl and a dilute solution of electrolytes of low molecular weight, the
‘pontribution to the diffusion potential of the concentration gradient of
the dilute electrolyte is negligible, because it is drowned in a large
cess of KC1. The concentration gradient of the KCl does not con-
ibute to the diffusion potential because the mobilities of K+ and Cl-
» nearly the same. In the liquid junction between saturated KCl and
-oolloidal solution or suspension, the diffusion gradient of the colloid
\still plays a negligible part on account of the high excess of KCI. In the
tail of the concentration gradient of KCl, however, where the equivalent
“ooncentration of KC(l is of the same order as that of the colloidal ions,
e mobilities of K+ and Cl~ may be considerably changed in the high
slectric fields around the particles. The changes for K+ and Cl~ are in
Sppposite directions and thus may lead to a considerable diffusion
stential. It hae even been argued by JENNY ef al.®® and by BaBcock
ad OVERSTREET,? that the Donnan potential is completely situated
§ this liguid junction and not at the membrane. However, we run up
p against the well-known difficulty of defining the potential differ-
o between two phases of different composition. GUGGENHEIM®Y, (10
ghowed that this quantity is not accessible to any experimental
determination.
There is a way out of this difficulty, as a theory can be formulated
‘on the e.m.f. of the complete Donnan cell (including the two liquid
Junotions) in which these equivocal potentials of separate phases are
‘avoided (OVERBEEK(9),
It bas been proposed that this e.m.f. which is accessible to measure-
t, be called the Donnan e.m.f.,, as distinet from the Donnan
ptential between the two phases, which cannot be measured.

a ‘l!lual!y determined, consists of the two Donnan phases in equilibrium,
®ach in contact with a saturated solution of KCl. It is irrelevant to
which type of reversible

I IT TII v
sat. KCl | equilibrium solution | suspension | sat. KCl (47)
1 2 3
membrane

elootrodes the saturated KCI phases are connected. The membrane is
*meable to water and 4o all the small ions and supposedly, completely
permeable to the suspended particles.

The total e.m.f. of the cell® can be calculated as the sum of three
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liquid junction potentials. Applying the usual equation for the l.j 3
potential (cf. MacINNEsS“V) one finds

right t
— BF = 2 = du, ... (48)
left i 24
where the sum is to be taken over all the ions, including the colloidal
particles. ¢, is the transference number, z;, the valence with sign
included, and g, the chemical potential of the species ¢. In order to
transform the chemical potentials of single ions occurring in (48), into
chemical potentials of neutral systems, we add to (48) the obvious
equality (49).
right -

0= S tdug ... (49)

left 4

where K represents a monovalent positive reference ion, say the
potassium ion.

The integral in (49) is zero because ¥f; = 1 and uz has the same value in the two
saturated KCl solutions.

In this way we find
right d/,L X ’
— EF = >t t dyK) ....(50)

left Z;

The expression in parentheses refers to a neutral substance. If ¢
represents a negative ion,

i o i . . }_
2 dpg = - (du; — zdpg) = - d/‘K,z'

where K¢ is the salt consisting of one ¢-ion and z K+-ions. If ¢ is a

du,
positive ion had g dug represents the change in free energy accom-
panying an ion exchange of one K-ion by 1/z, ¢-ion.
Eq. (50) can be further transformed by splitting the integral into
three integrals relating to the three phase boundaries in the cell (47).

equil. sol d X suspension
= [ () o [ ()
7 7 e

sat. KCi quil. sol i
sat. KCl
+ p32 (

suspension %

) (B

As the two Donnan phases are in equilibrium, the chemical potentials
of all diffusible salts are equal in these two phases. The chemical
potential of a salt of which the non-diffusible ions form a component,
changes across the membrane but the transference number of the non-
diffusible ions is obviously zero in the membrane. Consequently all the
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terms in the sum in the second integral of eq. (51) are zero and the
equation for the Donnan e.m.f. reduces to

equil. sol d . sat. KCl d, :
—EF:J‘ zt,(.:‘ dyK)—l—f Zt(”—dﬂx)

at, KCl ¢ i - uspension ¢
..(52)

This equation which has a clear thermodynamic significance, not only
shows that the e.m.f. of the Donnan cell can be completely expressed
in the properties of the solutions at the two liquid junctions, but also
that this e.m.f. is connected with transference numbers as well as with
chemical potentials.

In order to evaluate the Donnan e.m.f. in practical cases, the
relations between transference numbers and chemical potentials in the
liquid junctions have to be ascertained. Although strictly, the course
of the concentrations of all the components in the liquid junctions has
to be known, a very reasonable approximation is obtained by assuming
that in the significant part of the 1.j. the colloidal particles and all the
other constituents of the Donnan system have a constant concentration,
the only variation being a gradient of the concentration of potassium
chloride.

6.2.1. Ideal solutions

“If all the solutes, including the non-diffusible ions, behave ideally both
with respect to mobility and to activity, the following relations hold.

=1 —tg — g,

i K0l d 4
du .—RT—C—’ dug = BT K . .(53)
¢ 1%:4
deg = degy,
Substituting the relations (53) into eq. (52) leads to:
equil. sol
— BF = o (I — g — to)(— dpg) + ol — dpey — dug)
satb.
-} similar expression for the second integral
= — EF = RT equﬂ'm(_ doxe + tedeg Mﬁ)
sat. KOl 1574 Cx Cen
L RT sat. KC1 (_ % i thCK _ tozdcoz)
suspension ’x 1524 Cor
equil, sol t t
= — EF = RT [(£ — ﬂ)ch —dln cK]
sat. KCL Cx Coq
sat. KCl
+ RT [(tiz— - @) deg —dIn cK]
suspension GK cC' 4
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As the mobilities of K+ and Cl~ are Very nearly equal, the transference
numbers of these ions are in nearly the same ratio as their concentra-
tion. Thus the terms (fxfcx — to./co,) are very close to zero and the
Donnan e.m.f. reduces to

equil. sol sat. KCl R
Ezﬂ,[fq dlneg + dmcK}zTTlan—'

F at, KC1 suspension Cx suspension

.. (BY)

which is identical to eq. (11). This shows that the treatment via the
liquid junction potentials is equivalent to the classical treatment,
provided the approximations for ideal behaviour are used.

6.2.2. Deviations from ideal behaviour

In order to apply eq. (52) to non-ideal cases, both transference numbers
and chemical potentials have to be known as functions of the com-
position of the solutions in the liquid junctions. In the present state
of our knowledge of these quantities, the best we can do is to use a very
simple example, i.e. a solution of a potassium salt of a polyelectrolyte
ion P with valence z and potassium chloride, and thake reasonable
estimates of mobilities and activities.
Specializing eq. {52) to the case just mentioned one obtains:

1 (equil sol 1 [tsat. XCl

EDoxman = tCldluKC’l + —F_

t
(tczdﬂxc'z + f dﬂPK.)
....(55)

F sab, KCl suspension

The term %dﬂ px, is usually small. We will neglect its influence

here, but if wanted it can be expressed in terms of dugy, and the
composition of the system as has been shown by OVERBEEK.®® In the
two integrals uz, has the same limits. Eq. (55) can thus be written

1 sat. KCl :
Eponnan = F (fcususpy — Porequit. soly))Ikcr - - - - (56)
Ho

in which g, is the chemical potential of KCl in suspension and equili-
brium solution. i

Assuming the mobilities of K+ and Cl- to be equal the transference
number in the equilibrium solution is ;. In the suspension the trans-
ference number differs from § for two reasons. In the first place there
are more K+ ions than Cl- ions (we neglect here the contribution to
the conduction by the non-diffusible ions). In the second place the
mobilities of K+ and Cl~ in the neighbourhood of the colloidal particles
are modified. Especially the mobility of the counterions may be far
below their normal value as is proved by the lowequivalent conductivity
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of completely dialyzed suspensions or polyelectrolyte solutions. A
reduction of the mobility by a factor four is not exceptional.(1®, “2)
The mobility of the co-ions will not be greatly changed because they are
driven away from the regions of high charge density.
If the non-diffusible ions carry a high charge (and this is the case
-when deviations from ideal behaviour will be most obvious), it will not
be a bad approximation to assume that this charge is completely
compensated by an excess of counterions, the concentration of co-ions
remaining the same as in the equilibrium solution (cf. section 5.4).
Assuming moreover that the mobility of the co-ions is completely
unaffected and that the mobility of the counterions compensating the
charge of the non-diffusible particles is reduced to 1/r of its normal
value, the transference number of the Cl ion in the suspension is given
by

Cc
toy = ———— e (5T)

1
26—{—%2;

where ¢ is the concentration of KCl in equilibrium with the suspension
and ¢, is the molar concentration of particles.

Writing 2RT dInc for dugy, eq. (56) is now easily integrated
leading to

RT c
E.Donna.nz"l‘?_ln P, ....(58)
c + ‘27
For a dilute suspension this is approximately equal to
BT 2, 1
EDonnanz“‘ﬁ‘?-;‘ ’ ....(59)

This expression, being identical to the ideal expression (15) except
for the factor 1/r shows that the first and biggest effect on the Donnan
e.m.f. is given by the non-ideal behaviour of the mobilities rather than
of the activities.

6.3. Ezxperimental evidence

A complete test of the theoretical considerations given in this section
cannot yet be given because the necessary transference data are lacking.
We can only take some existing data on Donnan-potentials and com-
pare interpretations with the theory just described and with the
classical Donnan approach.

KLAARENBEEK %9 determined Donnan e.m.f.’s in systems containing
sodium arabinate and KBr. The e.m.f. was proportional to the con-
centration of gum, with proportionality constants of 3-5, 0-7 and
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0-07* mV per milli equivalent of gum for KBr equilibrium concentra-
tions of 0-001, 0-01 and 0-1* X respectively. Ina 1 NV solution there was
no measurable e.m.f. Interpretation of these data with the classical
equation

RT zc,

b= 2F ¢°”

... (15)

would lead to the conclusion that the degree of dissociation of Na (or K)
arabinate is equal to 30 per cent, 60 per cent and 60 per cent* in 0-001,
0-01 and 0-1 N KBr respectively. It does not seem reasonableto suppose
that the dissociation should ¢ncrease with increasing content of salt.
The interpretation with eq. (52) or approximately with eq. (59) would
mean that in the lower electrolyte concentration the mobility of the
cations is considerably decreased and this is wholly in line with the
fact that at low ionic strengths the electrical potential around the
particles is high.

Similar conclusions can be drawn from data on the Donnan e.m.f.
of sodium bentonite published by Davist?® in which the apparent
degree of dissociation increases from 2-5 per cent to 10 per cent when the
NaCl concentration increases from 0-001 to 0-01 N.

ApAImr and ADATR™3), (), 45 made very careful and highly accurate
measurements of the Donnan e.m.f. of a number of protein systems and
of Congo red. In all cases they found a linear relationship between con-
centration of colloid and e.m.f. provided that the latter was not more
than a few millivolts. They considered this as suggesting that the acti-
vity coefficients of the diffusible salts are the same in the two phases and
therefore as an indication of the applicability of eq. (15). We have seen,
however, that the linearity by itself is a consequence of either theory. It
is therefore desirable to compare the valence of the colloid as calculated
with eq. (15) with independent evidence. Measurements on Congo red, 43
a disodium salt of a disulphonic acid which is aggregated in solution,
interpreted with eq. (15) seem to show that only 50 per cent of the
sodium ions are dissociated. Unfortunately the data are given for one
ionic strength (0-02) only, so that the course of this degree of dissociation
with concentration of salt is not known. However, the assumption
that the mobility of the sodium counterions is decreased by 50 per cent
seems preferable to the assumption of a very incomplete dissociation
of a sodium salt of a sulphonic acid in dilute solution (0-02 M).

Aparr’s data on protein, viz. edestin, serum albumin, hemoglobin3
and egg albumin®® and the recent data by CHARLWOOD®® on horse
serum albumin all show a relatively good agreement of the valence of
these proteins calculated from eq. (15) with independent estimates of
the valence, e.g. from analytical data, from osmotic pressures and from

* The figures for the 0-1 N solution are rather uncertain because X is so small.
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" electrophoretic mobilities.®), “4» Ag most of these experiments have
- been performed atrelatively high ionic strengths, the electrical potentials

. in the ionic atmospheres were rather low, which explains the good
agreement. Larger deviations from the classical theory are éxpecte\d
especially for low salt contents.

A remarkable effect that has been observed in studies on the sus-
pension effect in clays(14), 48 ig 5 reversal of the sign of the suspension
effect without a corresponding change in sign of the electrophoretic

mobility of the suspended particles. The effect seems to be connected
with the presence of bi- or polyvalent counterions. An explanation
based on the classical theory seems very difficult. In eq. (52), however,
in which as we have seen the counterions usually play a predominant
part, the transference number of the counterions needs only to become
_ sufficiently negative to explain a reversed suspension effect or Donnan
potential. Negative transference numbers in colloidal systems are not
abnormal. Cf. data by HartLEy, Corire and Samis“® on cetyl
pyridinium bromide. '

6.4. On the limited use of determining Donnan e.m f suspension effect or
pH of a suspension

We have seen that the Donnan e.m.f. and the suspension effect are
determined by a rather complicated mixture of mobilities and activities
of all the ionic species in the system. Simple relations only exist when
the whole system behaves ideally or somewhat less stringently when the
electrical potential near the non-diffusible particles remains low
(¢ << RT/F). Only in this case can the Donnan potential be interpreted
in a simple way, giving information about the valency of the non-
diffusible particles (cf. eq. 15). If the condition of low potential is not
fulfilled, however, interpretation is difficult even in the limit of vanishing
concentration of colloid. In these circumstances more information
can be derived from separate determinations of activities or mobilities.

If this point of view is accepted, one should also realize that the same
kind of difficulty may be encountered in the interpretation of the pH
of a suspension or polyelectrolyte solution. Much of the value of & pH
measurement derives from the assumption that pH gives a reasonable
estimate of the activity of the hydrogen ions. This can never be exact
because one deals here with a single ion activity but as long as there
are reasons to assume that the liquid junction potential with saturated
KCl is zero or at least independent of the hydrogen ion activity, the
calculation of a; from pH makes some sense. With polyelectrolytes
present in relatively large amounts any such assumption on the I.j.
potential becomes of doubtful value and an interpretation of the pH
in terms of activities of the H+ ions loses its sense.

It may be good to quote here words used by P. B. TAYLOR®? in 1927
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in a treatise on pH measurement: . . . for the cell e.m.f. depends not
only on the acid activity but alsc en the activity of every molecular
species in the cell and mobility of every ion. If these are sufficiently
well known to be allowed for, the acid activity is likely to be suffi-
ciently well known not to need measurement.”

7. SoME REMARKS ON BIOLOGICAL APPLICATIONS

This paper was aimed at a treatment of some difficulties in non-ideal
Donnan equilibria rather than at giving specific applications to bio-
logical systems. Three remarks may, however, well be made.

(@) Qualitatively there is little difference between the classical
approach and that presented here. The suspension has the higher
osmotic pressure, the counterions are accumulated in it and quite often
to a higher degree than the co-ions are driven away. The sign of the
Donnan e.m.f. is the same as the sign of the charge of the particles.
Only from the last rule exceptions may be found and explained as
suggested in section 6.3. Only if results are to be interpreted quantita-
tively, should a critical -attitude prevail. Perbaps unexpectedly the
largest deviations from classical Donnan theory may be expected with
the most dilute equilibrium solutions.

(6) Donnan systems are (or should be) in equilibrium. In many
biological systems membranes separate phases, that are not in equili-
brium, so that Donnan theory does not apply.

(¢) When electrical potentials are measured in biological systems,
quite frequently liquid junctions are used to make contact with
different parts of the system, e.g. the inside and outside of a nerve
fibre. For obvious reasons saturated potassium chloride cannot be
used in the liquid junction. A more dilute solution containing far less
K-ion is used, e.g. a suitable Ringer solution. The treatment as given
in section 6 can be applied to such systems with hardly anymodification.
It should be realized that the remarkable effect produced by the satu-
rated KCI bridges in the Donnan cell are nearly completely determined
by the low concentration side of the liquid junctions and consequently
will also be present in these potentials measured in biological systems.
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