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The form of the energy barrier between two sol particles is calculated from the electrical 
repulsion and the van der Waals attraction. Flocculation is retarded by this barrier, 
and the retardation factor W of the slow coagulation as compared to the rapid coagulation 
of the same sol is connected to it. 

It follows from numerical computations for monodisperse sols with spherical 
particles : 

(a) the value of W is mainly determined by the height V, of the energy barrier ; 
(b) there is a nearly linear relationship between log W and log c,, c, being the con- 

Approximate equations are derived for the relation between W and Vm, and between 
W and the concentration and valency of the electrolyte, the van der Waals constant, 
the surface potential and the particle radius. 

Experiments were performed to test the theory. Various silver iodide sols were mixed 
with various electrolytes. By means of different sol and electrolyte concentrations a 
range of 104 in W was covered. 

The change in turbidity was used to measure the rate of coagulation, This method 
worked well with polyvalent gegenions while there were some complications with mono- 
valent ions. 

The theory is confirmed by our own experimental results and by work of other authors 
as far as the linear relationship between log W and log ce is concerned. For small par- 
ticles absolute values of the surface potential and the van der Waals constant as derived 
from the slow coagulation agree reasonably well with other estimates. With coarser 
sols the calculated value of the surface potential was definitely too low. 

centration of electrolyte. 

The stability of lyophobic colloids depends upon the energy of interaction 
between two approaching particles. According to Verwey and Overbeek 1 this 
energy is composed of a long range electrical repulsion and a long range van der 
Waals attraction. For a given colloid the attraction is assumed to be constant 
whib the repulsion changes with the electrolyte content of the system. With 
decreasing repulsion the stability decreases. 

When there is no repulsion every collision of two colloidal particles leads to 
coagulation (rapid coagulation). When the repulsive energy is not zero only a 
fraction 1/W of the collisions leads to coagulation (slow coagulation). With 
increasing repulsion the value of W increases. Therefore W can be used as a 
quantitative measure of the stability, and we will call W the stability factor. 

No lyophobic sol is absolutely stable against coagulation ; that is W is always 
finite. However Wmay be so large, e.g. W > 109 that a sol in this state does not 
change perceptibly in many years. 

A relation between the stability factor W and the energy of interaction can 
be derived from the theory of Verwey and Uverbeek. It is the purpose of this 
paper to test this relation and some of its implications. 

* Present address : Koninklijke/Shell Laboratory, Amsterdam. 
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I. THEORETICAL PART 
1.  INTERACTION OF COLLOIDAL PARTICLES. The energy of interaction has been calculated 
for the models of infinite plane particles and of spherical particles. In our experiments 
we used silver iodide sols with relatively small particles which from electronmicrographs 2 
were shown to be nearly spherical. Therefore we chose the spherical model. 

(i) Structure of the double layer. 
As far as the stability is concerned the following model of the double layer will suffice.3 

The particle surface acquires a surface charge by adsorption of potential determining ions. 
A layer of gegenions adheres to the surface forming an ionic condenser, the Stern layer.4 
From here the diffuse part of the double layer extends into the solution.% 6 

The repulsive energy depends upon the potential across the diffuse part of the double 
layer, $8 (Stern potential), and the concentration and valency of the gegenions in the 
solution. 1 

(ii) Interaction of spherical difuse double layers. 
The electrical energy of interaction between the overlapping double layers on two 

spherical particles of equal size V g ,  calculated according to Verwey and Overbeek, appears 
to be positive which means that the particles repel each other. An approximate ex- 
pression reads 7 (at 25" C in water as a solvent) : 

V T  = 4.62 x 10-6 (ay2/u2) exp (- KHO) 

= 4.62 x 10-6 (ay2/v2) exp (- TU) = C exp (- TU), 

y = (ez/2 - l)/(& + l), z = ve$a/kT, 
v = valency of gegenions, 

K = (8~rnv*ez/~kT)* is the familiar expression in the theory of Debye and Huckel8 ; 
1 / ~  is a measure of the thickness of the diffuse double layer. 

7 = KU,  u = Ho/a, a = particle radius. 

HO = shortest distance between particle surfaces, 

An equation for the repulsion between two unequal spheres of radii a and b can be 
derived in the same way as (1.1). 

Vf= 2b/(a + b) x V $ = q T ;  b > a, (1.2) 
(iii) Forces of attraction. 

The concept of long range van der Waals forces was first introduced in colloid chemistry 
by Kallmann and Willstatter,g and theoretically developed by de Boer 10 and Hamaker.11 
In the stability theory of Venvey and Overbeek these forces play an importantrole. 
Sparnaay 12 succeeded in measuring directly forces of the predicted order of magnitude. 

An approximate expression for the attraction potential between two spheres for short 
distances (u < 1) is given by Hamaker 

(1.3) vy = - 2b/(u + b) x A/12U = - q A/12U = q V T ,  
where A is the van der Waals constant. 

iv) Total energy of interaction. 
The total energy V is the sum of the repulsive and attractive potentials 

V(4 = VR (4 + VA (4 (1.4) 
Fig. 1 shows the influence of electrolyte concentration c, on V, calculated with complete 

expressions for attraction and repulsion and with the approximations (1.1) and (1.3). 
It appears that the approximate curves are much too low. The main cause for this is a 
failure of eqn. (1.3) in this region of u values. Notwithstanding this systematic error the 
approximate equations are still quite useful as will be pointed out in 0 4 (ii). 

2. THE RATE OF COAGULATION. 

The kinetics of rapid coagulation of monodispersed sols have already been described 
in 1916 by von Smoluchowski,l3 who considered the process as a diffusion of the colloidal 
particles towards each other. It has been shown by Muller 14 that normal polydispersity 
has little influence on the results. 
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With regard to the slow coagulation von Smoluchowski assumed that the stability 
factor W remained constant during the whole process. Experiments show that this is by 
no means true : 15,16 the rate of coagulation decreases in the course of slow coagulations. 

"/kT 

5- 

- 0. 

- _  
I 

I I , 
0 0. I 0.2 0 . 3  0.4 u 

FIG. 1 .-Energy of interaction as a function of particle distance for equal spheres. Drawn 
curves : exact calculations according to Verwey and Overbeek, and Hamaker. Dashed 

curves : approximated with (1.1) and (1.3) 
a = lO-Gcm, A = 10-12 erg, v = 1. z = 3. 

Curves I : ce = 59-5 mmole/l. Curves I1 : ce = 93 mmole/l. 
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FIG, 2.-Energy of interaction and corresponding values of exp (Y/kT)/(u + 2)2. 
a = 10-6cm, A = 10-12 erg, v = 1, z = 3. 

Drawn curves : c2 = 75 mmole/l. Dashed curves : c, = 93 mmole/l. 

This is explained by the fact that, other conditions being equal, the repulsion between 
aggregates is larger than that between single particles. Since we want to characterize 
the stability of the original sol and not of the aggregates, the value of W must be extra- 
polated to zero time. 
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Considering the slow coagulation as a diffusion process in a potential field Fuchs 17 

derived a relation between the energy of interaction V and the stability factor W. 
du 

exp (V/RT) ~ 

(u + 212 
From potential curves of the type given in fig. 1 the value of W can be evaluated by 

graphical or numerical integration. In fig. 2 two potential curves and the corresponding 
values of exp (V/kT)/(u + 2)2 are given. It appears that the value of W is mainly deter- 
mined by the maximum V,  in the potential curve, the width and shape of the exponential 
curves being about the same. 

From plots of log W against log c, a nearly linear relationship is found (see fig. 3). 
At high electrolyte concentrations the repulsion is zero and W = 1. The bend in the curves 
lies in the region where V,/kT = 1. 
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FIG. 3.-Relation between stability factor and electrolyte concentration c, (mmole/l.) 
Curve I : a = 10-6 cm. A = 2 X 10-12 erg. v = 2, z = 6, 
Curve I1 : a = 10-6cm. z = 5, 
Curve 111: a = 5 x 10-6 cm. z = 5,  

A = 2 x 10-12 erg. 
A = 2 x 10-12 erg. 

v = 1, 
co = 1, 

3. INFLUENCE OF POLYDISPEKSITY AND STERN POTENTIAL. 

It can be shown18 that polydispersity tends to stability curves which are slightly 
concave towards the axes. On the other hand the Stern potential $8 decreases somewhat 
with increasing electrolyte concentration, which effect tends to give convex curves. Both 
influences are difficult to estimate. Since they are opposite to each other and from 
experiments nearly straight curves are obtained we neglected both effects and used the theory 
for mono dispersed sols with constant $a. 

4, DERIVATION OF APPROXIMATE RELATIONS. 

To avoid the laborious computations of the exact Verwey and Overbeek theory two 
approximate equations were derived. One has the form W = k exp V,, indicating that 
the stability factor W is determined by the maximum V,  in the potential curve. The other 
starts from the approximate equations (1.1) and (1.3) and leads to a linear relationship 
between log Wand log c,. 

(i) The maximum in the potential curve. 
For V ,  > kT only the values of exp (V/kT)/(u+2)2 which lie in the neighbourhood of 

the maximum contribute to the integral in (2.1). In this region (u + 2) only changes 
a few per cent. Therefore we write (u, 3- 2) instead of (u + 2), where u, corresponds 
to the maximum V,. From (2.1) we obtain : 

00 
W = 2/(u, 4- 2)2 1 exp (V/RT) dii (4.1) 

0 
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Expanding V(u) in the neighbourhood of V,,, in a Taylor series gives 
V =  V, + Vz(Au)2/2 + . . . (4.2) 

Using (4.2) and neglecting higher terms the exponential curve is replaced by a Gauss 
as V; = 0. 

curve with the same height and the same curvature in the maximum. 

- _- (vm'kT) exp [- pZ(Au)2] d(Au)f p = (- Vi/2kT)*. (4.3) 
(u, + 2)* rum 

Replacing the lower limit of integration by - co, which introduces only a negligible 

(4.4) 
In the appendix it will be shown that p(u, 3- 2)2 is practically constant. Thus W is 

determined by V,. 
With the help of eqn. (4.4), Wcan be evaluated from the potential curves without the 

tedious graphical integration of the exponential curves. In fig. 4 this procedure is com- 
pared to the complete calculation. It appears that eqn. (4.4) is rather a good approxima- 
tion, except evidently in the region where Vexact approaches the value 1. 

(ii) The lineuv relation between log Wand  log Ce. 

derived (see appendix) : 

error, we obtain : 
W = 2&/p(urn + 2)2 x exp (VJRT) 

Starting with the approximate equations (1.1) and (1.3) the following relation can be 

log W = - (A/24 u,kT) log Ce - (A124 u,kT) log (SrNv2e2u2 10-6/ckT) 
+ (3/2 - A/12umkT) log urn + Slog 96rkTIA 
- + log (2 - Turn) (urn + 214 

= - kl log ce + k2 (4.5) 

In fig. 4 curves calculated from eqn. (4.5) are shown together with the exact curves and 
where kl and k2 are constants, and N is the Avogadro number. 

the approximation (4.4). 

1 0 9 , 0 W  FIG. 4.-Relation between W and 
c, for different approximations. 

Left set of curves : a = 10-6 cm. 
A = 2 x 10-12 erg. z = 6. v = 2. 

Right set: u = 10-6 cm. 
A = 10-12erg. z =  3. v = 1. 

exact calculations. 

approxima tion (4.4). 

approximation (4.5). 

Drawn curves : 

Dashed curves : 

Interrupted curves : 0.5 0 0.5 I 1.5 ;? 

At first sight eqn. (4.5) appears to be a bad approximation. In the first place the 
curves lie much too low. This is readily explained, because the approximate energy 
curves lie much lower than the exact ones (see fig. 1). As the absolute values of the ap- 
proximatioils for the repulsive and attractive energies are both too large a nearly exact 
compensation of errors occurs for certain combinations of $& and A (for instance Q = 10-6, 
A = 3 x 10-13, z = 3, ZI = 1). Secondly, the curves are not straight. This is explained 
in the appendix. 

Nevertheless eqn. (4.5) is useful to calculate the slope of the stability curve. This 
slope is given by (see appendix) (at 25" C in water as a solvent) : 

'0% CG! 

(4.6) dlog - w- __ - 2.15 X 107ay2/v2 
d log c, 
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If one point of the curve is obtained with the exact theory or with eqn. (4.4) the re- 
mainder can be calculated conveniently with (4.6). Table 1 shows that exact and approxi- 
mate slopes are in reasonable agreement. It may be remarked that according to both 
calculations the value of A has no influence on the slope of the stability curves. The slope 
is proportional to the radius of the particles and increases with increasing surface 
potential. 

TABLE 1.-cOMPARISON OF EXACT AND APPROXIMGTE SLOPE. 

dlog W 
a A 2 0 d log ce 
cm erg 

exact approximation (4.6) 

10-6 10-12 3 1 - 6.6 - 8.6 
10-6 2 x 10-12 3 1 - 6.6 - 8-6 
10-6 2 x 10-12 5 1 - 14.0 - 15.3 

10-6 2 x 10-12 6 2 - 4.9 - 44 
5 x 10-6 2 x 10-12 5 1 - 72 - 76 

5. EVALUATION OF STERN POTBNTIAL AND VAN DER WAALS CONSTANT FROM EXPERIMENTAL 
STABILITY CURVES. 

The slope of the stability curves immediately leads to y and to the Stern potential $8 
with the help of eqn. (4.6) and (1.1). 

With $6 as determined in this way stability curves are constructed for a number of 
values of the van der Waals constant A. These curves are all parallel. The value of A 
belonging to the experimental curve can now be determined by interpolation. 

6.  APPENDIX. 
The linear relationship between log Wand log c, 

For two particles of equal size the total energy of interaction follows from (1.1) and 
(1 .3)  : 

V(u) = Cexp (- T U )  - A/12u. (6.1) 

(6.2) 

(6.3) 

The maximum of V (u) is obtained when 

Cexp (- Turn) = ~ / 1 2 7 4 .  

Combination of (6.1) and (6.2) gives 

In practical cases the values of T U ~  lie in the neighbourhood of 1 and u, changes only 

Eqn. (6.3) shows that for V, = 0 the value of TU, exactly equals 1 and by differen- 

Vm = A / 1 2 ~ ,  X (117 Um - 1 ) .  

very slowly with T. 

tiating eqn. (6.2) it is found that 

which is zero for TUm = 1. 

consider T U ,  w 1 and u, as a constant. 
As the flocculation conditions are always close to the case where V,  = 0, we may 

We thus may write 

From (4.4), (6.3) and (6.5) we obtain 
IITUm - 1 = - In TUm. (6.5) 

log W = - (A/12urnkT) log T - (A/12~,&2') log + log 2n* - logp (Urn + 2)' (6.6) 

(6.7) 

And from (4.3) and (6.1), 
p2 = - c / 2 k T  = A/24kT X (2 - T U m ) / U i .  

Combination of (6.6) and (6 .9 ,  with the help of the delinitions in ( l . l ) ,  leads to : 
log W = - (A/24u,kT) log Ce - (A/24umkT) log (8dWe2a2 lO-6/ckT) 

+ (312 - A/12~ ,kT)  log + *log 9 6 ~ k T / A  - 4 log (2 - TUm) (u, 4- 2)'s (6.8) 
where Ce is expressed in mmoles/l., and N is the Avogadro number. 
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Since on changing ce the changes in (2 - 7um) and u, are small compared to the changes 
Therefore, 

(6.9) 

in ce all terms in (6.8) except the first one may be considered to be constant. 
log W =  - kl log ~e + k2, 

see eqn. (4.5). 

It is clear that eqn. (6.5)-(6.9) only hold in a relatively small region of walues. 
Application of (6.8), outside this region and taking the non-constancy of u, into account 
will result in curved stability curves (see fig. 4). 

The slope k1 still contains u,. This may be eliminated by calculating u, from eqn. (6.2) 
using the condition that TU, = 1. This leads to 

urn = AeJl2C. (6.10) 
Inserting this value into eqn. (6.8) the slope of the stability curve is found to be (at 25" C 
and using water as a solvent) 

dlog WJd log Ce = - C12elt.T = - 2.15 X 107 L Z Y ~ / V ~ .  (6.1 1) 

11. EXPERIMENTAL TEST OF THE THEORY 
The theory has been tested by specially designed experiments on silver iodide 

sols and by using data already present in the literature. 

7. PREPARATION AND CHARACTERIZATION OF AgI-SOLS. 

here to the bare outlines. 
Details of our experiments on AgI will be reported elsewhere. We will restrict ourselves 

In order to test the influence of particle size, five sols were used. 
Sol A was prepared by mixing dilute solutions of AgN03 and KI, followed by electro- 

dialysis and electrodecantation using the methods described by de Bruyn and Troelstra.19 
Sol B consisted of the fine particles of sol A, that did not settle after centrifuging 

during 3 hours at about 2000g. 
Sol C consisted of the coarse particles of sol A obtained by careful sedimentation. 
Sol D was obtained from sol A by ageing at 95" during 50 hours. 
Sol E was prepared following Troelstra 20 by pouring a solution of AgI in concentrated 

All the sols used were brought to pI = 4 with KI. 

Particle sizes were determined by sedimentation, turbidity measurements (using 
Rayleigh's law) or from electronmicrographs. Although none of these methods gives 
very accurate results, table 2 shows a reasonable agreement between different methods. 

KI into water under vigorous stirring. 

TABLE 2.-PARTICLE RADIUS IN A OF DIFFERENT AgI SOLS 

SolA solB so1 C sol D sol E 

250 550 - 1560 

I 2000 

rate of sedimentation (minimum value) 

electronmicroscope (number average) - - - 

- 
turbidity (weight average) 520 205 520 650 - 

8. DETERMINATION OF RATE OF COAGULATION AND STABILITY FACTOR. 

In most cases the rate of coagulation was determined from turbidity. In the case of 
coagulating hydrophobic systems, light scattering is not suited to determine absolute 
values for the number of particles because the scattered light is not in a simple way related 
to the size of the aggregates. It may be assumed, however, that the scattering is uniquely 
determined by the state of coagulation, irrespective of the rate at which it is reached. 
Therefore rates of coagulation can be compared with each other by measuring the times 
after which a certain amount of scattering is obtained. This comparison is simplified by the 
fact that extinction-time curves all start with a linear part in agreement with calculations 
and observations by Troelstra 21 and Oster.22 Fig. 5 gives a few of our observations on 
the flocculation of Sol A with Ba(N03)~. 
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The slopes of the curves for zero time are proportional to the rate of coagulation or 
inversely proportional to the stability factor W, 

dE/df cc 1/W. (8.1) 

In order to cover a large range in W without getting involved in measurements at very short 
or inconveniently long times the sol concentration was varied. As coagulation is essentially 
a " bimolecular " process the rate of change of extinction is given by 

dE/dt cc C,2d/W, or 1/W cc (dE/dt)/(CS2d), (8.2) 

where C, is the sol concentration and d the length of the light-path in the sol. It was 
verified that the Lambert-Beer law holds up to extinctions of about 1.2. 

This method of determining W from eqn. (8.2) was very successful for flocculations 
with bi- and trivalent ions, With monovalent ions some complications arose. The ex- 
tinction was too high, probably due to a rearrangement of the primary particles in the 
aggregates. The stability curves ( W against ce) were therefore extrapolated to infinite sol 
concentration where the rate of this secondary rearrangement could be neglected compared 
to the rate of flocculation. 

E x 103 

I I I 

5 10 15 
M inutcz s 

FIG. 5.-Extinction against time for different Ba(N03)~ concentrations indicated by the 
numbers (in mmole/l.). Sol A. Concentration 0.1 mmole/l . AgI. 

For the very coarse sol E the extinction changed only very little during flocculation. 
In this case the rates of flocculation were evaluated by counting the particles in the ultra- 
microscope. 

For a single example (sol C with Ba(NO&), table 3 shows all the values of the stability 
factor obtained at different sol concentrations and electrolyte concentrations. 

TABLE 3.-vALUES OF 103/C,2d X dE/dt = Const/ W FOR SOL C AS A FUNCTION OF Ba(N03)z 
CONCENTRATION. &L CONCENTRATIONS IN MMOLE/l. PI = 4 

ce = 5.0 2.5 2.2 2.0 1.8 1.65 1.5 1.4 1.2 
rapid flocculation 

C, =1.16 - - - - 28 14 6.2 2.8 0-52 
0.58 - 285 137 74 25 12 5.9 

0-145 2040 238 - 71 
0.29 I - 143 - 

The proportionality constant is evaluated from rapid flocculations, where W = 1. 
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9. DISCUSSION OF THE. STABILITY CURVES 

Stability curves for the AgI sols A-E are pictured in fig. 6. The linear 
relationship required by the theory is confirmed. 

In fig. 7 stability curves are given which are calculated from coagulation measure- 
ments by other authors. In addition it may be mentioned that already in 1912 
Paine 23 gave an empirical relation : log W = k - p log ce, with p as a constant 
between 5 and 6. The slopes in fig. 7 range from - 2 to - 14. 

FIG. 

110 63 C e 
6-Stability curves for silver iodide sols. Electrolyte concentration in mrnole/ 1. 

4BsolA; OsolB; CIsolC; x so lD;  AsolE. 

W 

" \  

FIG. 7.-Stability curves for various sols. 

AgI sol, Lepin and Bromberg ; 24 

V gold sol (steep curve), Tuorila ;I6 
8 WO3 sol, Hermans ;25 

0 AgI sol, Hermans;25 
V gold sol (flat curve), Westgren ;26 
x &2S3 sol, Hofmann, and Wannow ;27 

+ selenium sol, Van Arkel and Kruyt.*s 

Although the linear relationship is in accord with theory, eqn. (6.11) is not con- 
firmed as far as the proportionality between slope and partide radius is concerned. 
For Ba(NO3)2 there is no significant difference between the fine sol B on the one 
hand and sols A, C and D on the other. The coarse sol E shows qualitatively 
the predicted effect that its stability curve is steeper than and intersects the curve 
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of the finer sols but the slopes d log W/d log Ce are not proportional to a. For 
KNO3 the results are still worse, the fine sol B having the steepest slope. 

There are only very few older publications on the influence of particle size 
on slow coagulations. Westgren 26 measured rates of coagulation of three mono- 
disperse gold sols with particle radii of 490 A, 770 A and 1200 A at various electro- 
lyte concentrations, and could not find any difference between them. 

Tuorila 16 on the other hand showed that in a mixture of two gold sols (a = 
20A and 250A) at a rather high electrolyte concentration the coarse particles 
coagulated at a much higher rate than the small ones. It may be assumed that 

had the same value for both kinds of particles in this mixture, while in Westgren's 
experiments may have had different values for the various sols. 

Holliday28 demonstrated a higher stability for larger particles. In a very 
fine gold sol the primary particles became unstable upon dialysis (low ce!) and 
coagulated, forming aggregates of two primary particles which did not flocculate 
any further. Application of the theory of Verwey and Overbeek leads to the 
plausible value of 

The results of van Arkel and Kruyt 15 on selenium sols show rather large differ- 
ences in coagulating rate at nearly the same particle size. Here, too, nothing 
was known about t,b&. 

It seems permissible to draw the conclusion that there is an influence of particle 
size, but this influence is over-estimated by eqn. (6.11). Possible reasons for 
this discrepancy may be deviations from spherical shape, or imperfections of 
the theory of interaction of spherical double layers. 

Yet we have used eqn. (6.11) to evaluate #d and A (see $ 5). The results 
are given in table 4 for our silver iodide sols and in table 5 for those sols of fig. 7 
for which particle sizes are known. 

w 100 mV. 

TABLE 4.-vALUEs OF STERN-POTENTIAL AND VAN DER WAALS CONSTANT 

electrolyte sol a 
A 

A x 1012 
erg 

$6 dlog W 
d Iog ce mV 

KNO3 A 520 - 5.9 - 24 0.05 
B 250 - 10.6 - 48 0.2 
E 2000 - 7.3 - 14 0.02 

Ba(N03)2 A 520 - 8.0 - 30 0.4 
B 250 - 8.0 - 53 0.9 
C 520 - 8.0 - 30 0.4 
D 650 - 8.0 - 26 0.3 
E 2000 - 11-0 - 12 0.2 

La(N03)3 A 520 - 5.8 - 28 1.0 

TABLE 5.-vALUES OF STERN-POTENTIAL AND VAN DER WAALS CONSTANT 

sol electrolyte a A author8 
dlog W $8 A X  1012 
dlogc, mV erg 

gold LiCl 350 - 14 - 48 0.6 Tuorila 16 
KCI 350 - 14 - 48 0.6 
CSCl 3 50 - 14 - 48 0.6 

gold LiCl 900 - 4.0 - 15 0.1 Westgren 26 
NaCI 900 - 2.0 - 10 0.05 

selenium KCl 500 - 13.0 - 37 0.2 Van Arkel 
520 - 4.7 - 20 0.05 and Kruyt 15 
620 - 5.8 - 20 0.1 

560 - 6.2 - 24 0.2 and Kruyt 15 
620 - 11.8 - 35 0.5 

selenium BaC12 560 - 5.0 - 21 0.2 Van Arkel 
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The values of $d have the expected order of magnitude (10-100 mV) although 
as a rule they are rather on the low side. This is especially striking for the coarse 
sol E and Westgren’s gold sol. On the other hand the rule of Schulze and Hardy 
is obviously obeyed in all cases mentioned and this points to (see ref. (l), p. 119) 
a rather high value of the surface potential (> 25 mv). 

It may be that the particle radius a has been over-estimated in so far that it 
is rather the radius of curvature at protrusions on the particle than half its diameter 
that determines its interaction with other particles. 

Tables 4 and 5 also give the van der Waals constant A calculated in the way 
described in 6 5. The values are in agreement with other estimates derived 
from flocculation values and from London’s theory. The great scatter in A 
for one sol shows that there are still serious shortcomings in the theory, but the 
assumption of a lower value for the effective particle radius a as indicated above 
would bring the van der Waals constants more in line with the values found for 
the smallest sol particles. 

Our results might be summarized in the following way. Taking into account 
the comparative crudeness of the theoretical approach the agreement with experi- 
ments is satisfactory. The straight line relationship and the fact that we find 
the correct order of magnitude of surface potential and van der Waals constant 
confirm the present picture of the stability of hydrophobic colloids. It certainly 
is desirable to improve both theory and experiments. Good experiments with 
truly spherical particles (e.g. with emulsions) are especially desirable. 
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