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Theorem 3. A^-Q = O for arbitrary AFV, ALit.

A2Q < O if AFi} and ALif are subject to a relation (34) with a % > 0.

Pro of : First we remark that on account of the symmetry of L-1 and
D we may write

Since H'1 is n.d. we find as a consequence of the fundamental inequality
for n.d. operators (cf. 1.) that Qz ̂  0. Hence O2(L°, F°, D) = O is a minimal
value for üz, and therefore A ̂ Qz = 0. Hence we have only to prove that

1.Q1= 0.
For that purpose we expand L~~l, H~l as follows

L-1 = (I? + AL)-1 = i0-1 + Afr-1) + A*(L-i)
-1 = (H* + AH)-1 = tf0-1

Here Ak(. . . ) denotes the aggregate of terms of order k in ALy, AF^; to
be more precise J*( . . . ) is a homogeneous polynomial of degree k in
AFiS, ALi}, with operators as coefficients. By (35) we find

^i, i) (D^i, i)

)i, i)—

Since both L°, F° are multiples of D, H° is also a multiple of D (cf. (31)),
and thus it will be seen that A!Q^ = 0. So we have proved that A^ü = O
for arbitrary AFif, AL^.

In order to calculate AzQi we must insert again (35) into the expression
for QI (cf. (31)) and collect the second order terms in AFif, ALy. Doing
thus it may be seen, that AZQ1 may be decomposed into a sum Z^ which
contains the terms with A (L-1) and A (H-1) and a sum Eiz which contains
the terms with A^L-1), A2(H-~>-). 27i2 can be obtained from A1^ by
replacing in the latter expression A (L"1) and Afö-1) by /d2(L~1) and

) respectively. Since A1Qi = O for arbitrary A (L-1) and A(H~l)
is also = 0. Hence we have only to calculate 27a. Taking into account
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that L°, F°, HG are multiples of D, say a Q-, a a- and a r-tuple respectively,
we find after a somewhat lengthy but elementary calculation,

f A^ = (A(H-i)i, i) (A(L-i)i, i) - (A(L-i)DA(H-i)i, i) • (D~H, i)
\ A2Qs = r-*[(D-H, i) (Afi-^DAiL-^i, i) - (A(L-^}i, t)*].

Since Qz > O, Q2(L°, F°, D) = G, A^QZ(LP, F°, D) = O, we find that neces-
sarily AZQZ ^ 0. This result can also be derived froni (36) by means of the
Cauchy— Schwarz inequality for definite operators. Futhermore it appears
frora (36), that in order to compute A2Q we need only caloulate
and A(L-*).

From

and the expansion
oo

(I + A)-i = I+ 2 (-1)^
i = l

which is valid for small operators A, we find

(L° + AL)-1 = L0-1— L°-lALL0-i- + terms of higher order.

And since L° = gD, this shows that

(37) A(L-1) = -

In the same way we find

(38) A(H-1) = -T-*D

Furthermore H = F — DL-1D, lience
(37) (34)

(39) AH = AF — D/1(L"1)Z> = AF + Q-*AL = (x + Q~2)AL.

(39), (38) and (37) yield

(40) A(H-^} = (r-2 + ^r-^CL-1).

Inserting (40) into the espression for AZQ-^ we find that

and hence

According to the aforesaid Azüz ^ O, and so it appears that Azü ^0 if
X < O, and ^ O if i ~> 0. This completes the proof of OUT theorem.

Remark. In the above proof D is kept fixed. If D was also allo wed
to vary slightly the final result would have remained the same. This may
be shown as follows: A variation

L° -> LI = L° + AL,
FO _> FI = F o + AF>

D° -> X>x = D° + AD,
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may be performed in two separate steps

L° -> L2 = ^Dj = L° + eAD,

F°^F2 = aD1 = F* + aAD,

D° -> D1 = D° + AD
and

L2 -> LI = L2 + A2L, with A2L = AL — @AD,

F2 -» Fl = F2 + AZF, with A2F = AF— aAD,
D^D,.

The first step does not change Q. The second step is precisely a variation
such as is studied above.

In 4. 1. it will be shown that for a cylindrical capillary under the con-
dition D = constant, L and F vary in opposite senses. Hence in (34)
ALy and AF^ have opposite sign, and consequently i < 0. This leads to

Theorem 4. Given a network with cylindrical capillaries of equal
diameters. Then if the diameters and lengths of the capillaries are slightly
changed the resulting network will display at most an apparent f-de-
pression but not an apparent rise of f apart from third order terms in the
deviations.

3. 2. In this section we shall calculate the capacity of conductance of
a network 31. In practice this quantity is determined by measuring the
conductivity of 9J if 9Z is immersed in a concentrated solution of an
electrolyte. In that case surface conductance may be neglected and
Ltj = xGv , x being the specific conductivity of the liquid, and hence
aL = D with a = vr^Z. The formulae (22) yield

(41)

Now we may determine by means of (26) the electric current through
and using (41) we find

- „
= E

so

—X(L~H, i) = E.

Since L = xC, the conductivity of 31 tums out to be — %(C~H, i)~l and
hence the capacity of conductance is — (C~^i, i)~l,

4. 1. In this section we shall examine more closely the quantities
-̂ 12' J^i2> -̂ 12 ^or a network with two nodes, i.e. for a single capillary.
Therefore we shall omit subscripts.

Putting p1 — p2 = p, e1 — e2 = e, I — electric current in the direction
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l -> 2, F = flow of liquid in the direction 1-^2, the equations of steady
state for an electrokinetic process may be written as

(42) (Le+Dp = I
\ De + Fp = F.

From these equations it appears that

jP is the hydrodynamic conductivity and may be taken as nE^jS-rjl, where
R = radius of the capillary, 77 = viscosity of the liquid, l = lenght of (l, 2).

Before deriving more explicit formulas for L and D we remark that I
consists of a transport of electricity by conduction and a transport of the
electric double-layer-charge in the boundary layers by the streaming
liquid.

Now introducing cylindrical coordinates in the obvious way we find

ƒ Zn r QV dr
(43)

F = f 2n r v dr
o

where

p(r) = double-layer-charge density )
, . , ., . ,, ,. . T \ at distance r from the axis

v(r) = velocity of the liquid l
K = specific conductivity of the liquid

l = length of capillary.

v and Q satisfy the following differential equation and boundary conditions

i ~ T (r ~rTl + — = °r dr \ dr J -n
(44)

gg o , v(S) = 0.

So we find
f / a R „ x

(45) - \L=ll'(*»'+{*"***)
l V

l o n E

Supposing that Q =fc O only in the boundary layers it is easily seen that L
and D may be approximated by the following formulae (cf. [1])

(46)
(D = l'1-cm SP,

J) An additional surface oonductanoe of the form 2naER would only make
the following proofs (conclusions) more stringent.
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where A may be interpreted as a surface conductance and a equals the
constant Z (cf. 3. 1). In this case it is easily seen that L\D and FjD vary
in opposite senses, a result which we needed for theorem 4.

4. 2. Our object in this section is to show that the energy dissipation
of an electrokinetic process calculated with L and D according to (45) is
positive. This shows that these quantities such as they are given by (45)
are compatible with the requirements of thermodynamics.

The energy dissipation in an electrokinetic process is obviously

Ie + Vp = Le2 + 2Dep + Fp2.

The requirement that this should always be positive unless e — p — O is
equivalent to

(47) LF > D2.

Taking 1=1 for simplicity we have

Hence it is sufficient to show that

(48) ƒ 2n rqdr^ ( 2nr J dr)\

Integrating by parts and using v(R) = O we find

B B J„
(49) J2rvdr = - (r2^dr.

o o clr

Using (44) and integrating by parts we find

"rƒ

Sy (49) and (50), (48) becomes

/rru "r J ^ ? d l dv\ , n ? /tfo\2 j(50) ƒ rgt; dr = _ j « _ r d r = r ; d r .

Put r = Byï then (51) becomes

Putting t* f ̂ |j = f (t) this inequality may be rewritten as

(53) ƒ (t*)* dt } f(t)2 d f s z ( ] t * f(t) dt)z

0 0 O

which is a special case of the Schwarz-inequality.
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