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ELECTROKINETIC EFFECTS IN A NETWORK OF CAPILLARIES

I
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(Communieated by Prof. H. FKEUDENTHAL at the meeting of June 28, 1952)

In a joint paper [1] with WIJGA one of us discussed the phenomenon of
the apparent f-depression found in electrokinetic experiments with dilute
solutions of electrolytes. It was shown that for electro kinetic experiments
performed with a set of capillaries in series the apparent f-depression could
be explained theoretically by taking into account the effect of surface
conductance. The question remained open whether in the case of a general
network of capillaries the effect of surface conductance would also lead
to an apparent f-depression. In that case the f-depression found in experi-
ments with diaphragms would be explained qualitatively. With the object
to answer this question the present mathematical analysis was under-
taken. The main result obtained, far from being conclusive, is the following:

A network with cylindrical capillaries of equal diameters will display no
change in f. If the lengths and diameters of the capillaries are slightly
varied the apparent f-potential will also vary slightly. The first order
change of £ is always zero, while the second order change of f is non-
positive. So networks whose capillaries have diameters Q which lie in a
narrow range about an average value a will display an apparent depression
of £ apart from third and higher order terms in the quantities Q— a.

There are however also networks with an apparent rise of £. A method
of constructing such networks was suggested to us by Prof. H. FBEUDEN-
THAL. We shall not carry out this construction here. In our paper [3]
simple three-capillary networks with an apparent rise of £ are discussed.
These examples together with experimental evidence seem to suggest that
networks with an apparent rise of f are rather "rare". However we have
not been able to prove this mathematically (under a suitable definition
of "rareness").

1.1. In this section we briefly recall some concepts and theorems of
linear algebra needed in the sequel.

Throughout this section R denotes a finite dimensional vectorspace with
an inner product. Linear operators to be considered transform R into
itself. (x, y) will denote the inner product of x and y.
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A linear operator B of E is said to be the transposed of a linear operator
A if .(Ax, y) = (x, By) for every pair of vectors x and y of B. Any linear A
has exactly one transposed which will be denoted by A'. (A')' = A,
(A^A^ . . . An)' = A'n . . . A%A(. Transposed operators have with respect
to an orthonormal base matrices which are each other's transposed in the
usual sense.

A is symmetrie if A = A'.
A symmetrie A is negative definite (n.d.) (positive definite (p.d.)) if

(Ax, x) < O (> 0) for each x -£ 0.
A symmetrie n.d. operator A has an inverse A"1 which is also sym-

metrie n.d.
If A is symmetrie, x a vector, and Ax = fa for a suitable scalar A, then

A transforms into itself the spaice of the vectors perpendicular to x. (y is
said to be perpendicular to x if (x, y) = 0.)

For a n.d. (p.d.) symmetrie A there holds the Cauchy-Schwarz in-
equality

(Ax, x) (Ay, y} — (Ax, y)2 ^ O, for each pair of vectors x, y.

1. 2. We consider the following linear equations

(Lx + Dy = x'
'

where x, x', y, y' are vectors of R. L, D, F are symmetrie operators of R
which satisfy the condition

(2) (Lx, x) + 2(Dx, y) + (Fy, y) < O if not both x and y are zero.

First we wish to prove that (1) has a unique solution for arbitrary x' and y'
and secondly we wish to obtaiii this solution explicitly in terms of x', y',
L, D, F.

To that end we consider the linear space [R, R~\ consisting of the pairs
[x, y] of vectors x and y of R, with the following law of addition and scalar
multiplication

[x, y} + [«!, t/J = [x + x^y + t/J

The inner product in [R, R~\ is defmed by

([x, y], [xv yj) = (x, x^ + (y, yj.

The vector [x, 0] is called the fi.rst component of [x, y\ and [O, y~\ is called
its second component. Bt denotes the space of the i-ih components
(i = l, 2). The operator which transforms each vector into its i-th com-
ponent (i = l, 2) will be denoted by Pt. It is easily verified that Pi is
linear, symmetrie, Pf^ = P{, PI + P% — identity operator /, i.e. the
operator which transforms each vector into itself.
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Let E be an arbitrary linear operator of [E, .R]. Tlien according to the
aforesaid

(3)
= l 2

,, where

Since E^Pj [B, E] = E^Bj is contained in Ef we find by means of (3) the
following relations between the components of [x, y] and of its image

( [x', 0] = E^x, 0] + #12[0, y]

?[0, y"[ = Ezl[x, 0] + £22[0, y}.

Confusing systematically the vector [x, 0] of B1 with the vector x of E and
the vector [O, y] of .Z?2 with the vector y of J?, and considering the operator
E ̂  of R j into -Rf in an obvious way as an operator of R into itself we may
write (4) as follows

(4.1) KlJt"

Conversely if Eti (i, j = 1,2) are operators of E into itself they determine
in a unique way by means of (4. 1) or (4) an operator E of [E, E]. E = /
if and only if Eu = Ezz = I. E12 = E21 = 0. In analogy with matrix
notation we write

\E21 E22J

( JC 7f \
j,11 j^12) be a second operator in [E, E] then

/g\

V-^21-^11 + -^22-^21 -̂  21-̂ 12 +

.Returning to (4), suppose that jE? is symmetrie, then on account of the
symmetry of P4 we have

(6) E'v = (P^P,)' = PiEP, = E„.

So -Ej! and Ew are symmetrie; ^2 and J/21 are each other's transposed.
Conversely E'u = ^?n, E'^ = j&21, ^a = ^22 imply the symmetry of E.

For a symmetrie 2? we have

(E[x, y], [x, y]) = ([E^x + E^, E^x + Erf/], [x, y]) =
(EjjX, x) + (x, EKy) + (E21x, y) + (E^y, y).

Since E1Z = E^ we find

(7) (E[x, y], [x, y]) = (Eux, x} + 2(E^, y) + (E^y, y).

So a symmetrie E is n. d. if and only if

(8) (Enx, x) + 2(Elzx,y) + (E^, y) < O if not both x and y are zero.
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Combining the foregoing with the fact that a n.d. symmetrie operator has
an inverse, we see that (1) is uniquely solvable for arbitrary x', y' on
account of (2).

By putting y = O in (8) we find that (Eux, x) < O for x ̂  O, and in the
same way by putting x = O, (E22y, y) < O for y 9^ 0. Hence Eü is ne-
cessarily n.d., and so Ea has an inverse E~l (i = l, 2).

Now we shall solve (4. 1) under the assumption that E is n.d. This

( TT TT \

" * 2 ) of E. From-K.21 A22/
K E = I we find using (5)

(9.1) KUE11 + K^E^ = I (10.1) E„Eu + K«Pa.=°0

(9.2) KnEa + KjJSa=Q (10.2) K^EIZ + KZJE^ = L

Eight multiplication of (9. 2) with E^-E2i and subsequent subtraction from
(9. 1) yields

Kufön — ^izE^Ezi) — I'
This shows that

(11) EK- E1ZE^E21

has an inverse and that

(12.1) Ku= (Eu - E^E^E^)-1.

In a similar manner we find

(12. 2) K?, = (En- EaE^EjJ-1.

(12. 3) „ KV = -E^E12K„ == -E^En(Em - E^E^E^)^.

(12. 4) £-a = -E^E^KK = -E^E^E^- E^E^E^)-^.
K being the inverse of a symmetrie n.d. operator, K itself is symmetrie

n.d. As a consequence K1: and JT22 are symmetrie n.d. ; K12 and K21 are each
other's transposed.

In view of subsequent needs we derive a formula which permits us to
express Ku by means of K^ and vice versa.

From K1Z = K'zl we obtain

(is) E^E^KZZ = K^E'^E^z = ^uE^E^1.
So we find

(13) (12.1)

Hence

(14) Kn = E^ +

and in a similar way

(15) KM = E£ +
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2. 1. A network 9ï of capillaries is defined as a system of "junction
points" or "nodes" interconnected by capillaries in such a way that

(a) any two nodes are joined by at most one capillary,
(b) any two nodes may be joined by a "path" consisting of capillaries

of W.
The nodes of yt will be labelled l, 2,. . ., n and a capillary joining i and j
will be denoted by (i, j).

Suppose that 91 is filled with a liquid. Be Ly the electric conductivity
of (i, j), Fv the hydrodynamic conductivity of (i, j), C^ the capacity of
conductance of (i, j). The latter quantity is defined as the conductivity of
(i, j) divided by the specific conductivity of the liquid if (i, j) is filled with
a liquid of high specific conductivity e.g. mercury. Let Zti be the constant
defined by

where v and E would be the flow of liquid and the potential difference
between i and j, if (i, j) were subjected to an electroosmotic experiment.
According to [1], [2], [5] Z^ may also be defined by

where s = streaming current, and P = hydrostatic pressure difference
between i and j under a streaming potential experiment for (i, j). We set
ZyGy = Dy. Then an electrokinetic process taking place in 9Ï, with

s4 = electric output current
vi = output flow of liquid .
et = electric potential '
Pi = hydrostatic pressure

may be described by the equations (cf. [2])

Defining Lti = - 2,- Ltj, J>„ = - 2i A,-, -^« = - S ^« , the above
3*i j'*i )'*»

equations take the form

(17)

2. 2. We shall write (17) in the abbreviated notations of linear algebra.
To that end we define in the cartesian w-space N the folio wing vectors,

operators, etc.,
e = (e1; . . . ,ej s = (sl5 . . ., sj r = (l, l, . . ., 1)
p=(pv...,pn) v= (v1} ...,v„) i = (—1,0, ...,0,1).
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The inner product of the vector x = (x1, ..., x„) with the vector
y = (y1} .. ., yn) is defined by (x, y) = „

L = operator with matrix (Lv)
D = ,, „ ,, (Dy) symmetrie operators.
F = (F-}•*• ? J J J ? 5 \ 43 /

R = space of vectors perpendicular to r, i.e. the space of the
vectors x = (x1, . .., xn) with Si xi = 0.

Then we may write (17) in the form

n ON ( Le + Dp = s )(18) l } s and v are vectors oi R.
( De + Fp = v )

Since L, D, F annihilate r, we may subtract from e and p arbitrary
multiples of r without changirig the right hand sides of (18). From a
physical point of view this subtraction amounts to a change of the zero
point on the scales by which we measure the electric potential and the
hydrostatic pressure; this clearly does not affect the above equations. By
subtracting from e and p suitable multiples of r, e and p become vectors.
of R, i.e. Sl ei = St p^ = 0. Throughout the following sections we suppose
e and p to be normalized in this way. Furthermore, since L, D, F annihilate
r, they transform R into itself. Therefore we may also consider (18) to be
equations in R whenever it is convenient.

2. 3. In order to solve the equation (18) (considered only in R) with
respect to e and p we may apply the results of 1. 2., provided that it can

be shown that . £ ? = ( _ „J is symmetrie n.d.

The symmetry of E is obvious. Therefore we shall only be concerned
with the proof that E is n.d., which will be based on the fact that the
energy dissipation in 3J is positive.

The dissipated energy in 9? is the sum of the dissipated energies in the
separate capillaries. For (i, j) the dissipated energy (per unit of time) equals
electric current x potential difference + flow of liquid x pressure
difference =

~«i) +-D«(Pj-?<))(«ƒ-«•) +(19)

( (Ajfo-e,) + JVft-p,)) (Pi-Pi) > 0.

The equality sign holds only if the electric current and the flow of liquid
are zero, i.e. if p^ = pi: e^ — et.

Consequently the energy dissipation in 9£ (per unit of time) is

(20)
£,,- (Ltj(ej—et) + Dy(pj—Pi)) (e,--ei) +
= 9

The equality sign in (20) holds only if for each (i, j), pt = pjt ei — e,-.
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Since each node of 9Ï may be joined by a path of capülaries with node l
we find that the equality sign in (20) holds only if e^= e2= . . . = en,
pT — p2 = ... = pn. Since e and p are normalized such that £et = Zpt = O
this condition means that e = p = 0.

Furthermore it is easily verified that the lef t hand side of (20) may be
written as

hence (20) implies that

*-£?)
is n. d. E.

2. 4. Using the formulas of 1. 2. with En = L, Ezi = E12 = D, E2a = F
we find

1 p = K21s + Kwv,
where

JKn is symmetrie, n.d., K^1 = L — DF~1D

(22)
K'iz = KZL and so (K2lx, x) — (Klzx, x) for every x
Ku = L-1 +

2. 5. We now assume that a flow of liquid and an electric current can
only enter or leave St at l and n, so

(23) s = U, v = pi, (cf. 2. 2),

where |1| and |/«| are the amounts of electricity and liquid streaming
through 9Ï per unit of time. Putting E = e^ — en = — (e, i), and P = pj_ +
— pn = —(p, i) we find by inserting (23) into (21) and subsequent inner
multiplication by i

P = ïiKzji, i) + p(Kzzi, i).

In case of electro-osmosis P = O and we find by an easy computation

„ft

(26) - A " •''* - (K12i,i) = E.v ' "• 12 ' '

It may be proved that A has the same sign as E, a result which is obvious
from a physical point of view. Since K^ is n.d., we see that (K^i, i] < 0.
So we find that n has the same sign as l if (JK12i, i) > O and opposite sign if
(K12i, i) < 0. Both cases may occur in practice. Henceforth we shall assume
that A and [t have the same sign, i.e. (K12i, i) > 0.
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3. 1. We now suppose that 5ft is a network whose capillaries are made
of the same material. The latter assumption is not strictly needed in the
greater part of this section ; however it will be convenient. On account of
our assumptions Z^ does not depend on (i, j) [1], and so we have Zit = Z.

It has been shown experimentally [5] that for an arbitrary homogeneous
network (i.e. a network whose capillaries are made of the same material),

(27) p = Z'7E,

where y = capacity of conductance of 9t, and Z' is a constant depending
on yi and the liquid. It turned out that Z' < Z, a phenomenon which bears
for various reasons the name of "apparent £-depression".

We shall examiue what relation between Z' and Z follows from our
analysis .

In order to compare the Z' of (27), such as it may be computed from
(25), with Z, we must compute the capacity of conductance y of 9i. This
calculation will be carried out in 3. 2. We use here only the result that

(28) y=-(C-]»>t)-1.

C denotes here the operator in the space N whose matrix elements are
Cy(i ^ j ) , C^ = — 2; Ctf> where for i =£ j C,M denotes the capacity of

J*i
conductance of (i, j).

The relations Z' ~ Z are equivalent to

(29) (Zy)-i f (Z'j}-\

Since D = Zo we find by (28) that — (D~H, i) = +(Zy)~1. Comparing (27)
to (25) we find that

Hence (29) becomes

Since (K21i, i) > O we find by multiplying (30) by (K2li, i), and replacing
(K21i, i) by (K-^i, i), that

Z' f Z if and only if _Q | O, where
Q = (Kui, i) (K^i, i) - (Kwi, i)* + (*„», i) (D~H, i). l )

Expressing Ku by means of K22 (cf. (22)), and putting K22 = H'1, where
H= F— DL-W we find

(31) I = (H-H, i) (L-H, i) - (L-ÏDH-H, i) (D-H, i)
2 = (H-H, i) (L-i-DH-i-DL-ii, i) - (L-^DH~H, i)2.

1) If for the liquid and the network under consideration (KM i, i) < O we find
that Z' J Z if Q 5 0. In this case however Z' and Z are negative, so that the
phenomenon of apparent ^-depression is described by Z' > Z instead of Z' < Z,
and heuce in this case an apparent f-depression leads also to Q > 0.
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In absence of surface conductance Ltj = xCy, where K depends on the
liquid only [l], and thus L = xG. Since D = ZC, we have L = aD (a = xZ~^}.
Inserting this result into (31) we find that both Q± and Q2 are zero, and
hence ,0=0. So we have

Theorem 1. In absence of surface conductance our analysis leads
to the classical results of SMOLTJCHOWSKI ([1], [3]), viz. that the constant
Z' in (27) depends only on the liquid and the material of the network, but
not on the geometrical dimensions of the network.

From 4. it will appear that for a cylindrical capillary with radius r and
length l, and endpoints l, 2, L12, _F12, Z>12 may be represented by

(32) LU = h(r) l~\ FU = f*(') ̂  A« = /sW ̂

where fi (i = l, 2, 3) is a suitable function of r.
From (32) it appears that if all capillaries of 9t have the same diameters

both L and F are multiples of D, and hence again Q^ = £?2 = 0. Hence
we find

Theorem 2. I fa network consists of cylindrical capillaries of equal
diameter, then Z' = Z, i.e. there is no apparent rise or depression of f.

The fact that an apparent rise or depression of £ can only be expected
for networks with capillaries of different diameters can be made clear in a
similar way as in [1] p. 558.

Now we examine Q for a network whose capillaries have almost equal
diameters, i.e. the diameters of whose capillaries lie in a small range about
an average value. In that case L and F are "almost" multiples of D, i.e.
L and F may be represented by

L = L° + AL
(33)

t F = F°

where L° and F° are multiples of D and AL and AF are "small iiicreases"
of L° and F°. Before formulating and proving a theorem on such networks
we make some remarks.

From (32) it appears that for a single capillary there exists a relation
y(L12, F12, D12) = O between L, F, D (we omit the subscripts for a moment),
with a ij) that is homogeneous of the first degree, i.e. ip(AL, AF, AD) =
= ky(L, F, D). As a consequence ~bipl~üL, 'èyi/'üF, S^/öZ) are homogeneous
of degree zero. Since the operators L°, F° are supposed to be multiples
of the operator D, their matrixcoefficients L% , F^ , D0 have ratios that
are independent of i, j. So

are independent of i, j. Furthermore the increases AL^, A F^ satisfy

|| (L%, II, D„). ALV + g (LI, II, Dti) AFV = O
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except for terms of higher order. Hence we find

+ terms of higher order in AL{i;
(34) does not depend on i, j.

Q may be considered as a function depending on the parameters Fi}> L^, Dit.
Taking account of (33) we may expand Q as follows

Q(L, F, D) = Ü(L», F°, D)

where Ak denotes the aggregate of terms of order Je in ALti,
We shall next prove theorem 3.


