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The thermodynamics of irreversible processes is developed for a system placed in a centrifugal field and
consisting of a number of components, some of which carry electrical charges. It is found that an Onsager
reciprocal relation connects the sedimentation potential with a quantity which we call batycentric elec-
trophoresis (i.e., the quotient of the total'mass flow and the electrical field at zero centrifugal field). The
latter quantity turns out to be ordinary electrophoresis in a colloid (i.e., in a system of one neutral and a
number of charged components, one of which consists of colloidal particles) under certain limiting, but
frequently realized, circumstances. If conduction relaxation exists, it appears in both connected phenomena
described here.

I. INTRODUCTION

THE problem of the connection between sedimenta-
tion potential and electrophoresis in arbitrary

systems has not heretofore been studied in a systematic
manner. It was therefore thought useful to employ the
thermodynamical theory of irreversible processes1-2 to
discuss this problem for a system composed of charged
and neutral components. In this paper it is proved
(Sees. II-V) that a relationship can be established be-
tween the sedimentation potential and a phenomenon
which we call barycentric electrophoresis. This latter
quantity is defined as the quotient of the total mass
flow and electrical field in the absence of a centrifugal
(gravitation) field. From the general formulas, the con-
ditions are derived (Sec. 6) under which the relation
mentioned above transforms into a connection between
sedimentation potential and ordinary electrophoresis
(defined as the quotient of a flow of one kind of charged
particles and the electrical field at zero centrifugal
field). It turns out that these conditions are usually
fulfilled when one charged component consists of colloid
particles. It is proved that, if relaxation exists, its
influence appears in both coupled phenomena.

(It may be noted here that other electrokinetic
11, Prigogine, Etude Thermodynamique des Processus Irréversi-

bles (Thesis, Brussels, 1947), pp. 76, 100.
2 S. R. de Groot, Thermodynamics of Irreversible Processes

(North Holland Publishing Company, Amsterdam^ and Inter-
science Publishers, Inc., New York, 1951), pp. 94, 106.

effects, viz., electro-osmosis and streaming potentials in
diaphragms, have been treated3 by means of the
thermodynamics of irreversible processes previously.)

II. THE ENTROPY BALANCE

Let us consider a system composed of n components
(A=l, 2, • • • , » ) , of which m carry electrical charges
0k (&= 1, 2, • • • , m) per unit mass, and of which n— m
are neutral (em+i=em+2= • • • =e„=0). This system is
brought into a centrifugal (gravitation) field g. The
temperature is assumed to be uniform. In this paper we
limit ourselves to the study of the behavior of the
system in the homogeneous region between the elec-
trodes, and we do not consider the problem of possible
electrode reactions here. In the thermodynamics of irre-
versible processes,1'2 "the entropy balance equation,"
which we shall need further on, is derived from a set
of fundamental equations. Those equations have the
following forms in our case of a so-called "continuous
system," i.e., where the state variables are continuous
functions of the space coordinates.

A. Law of Conservation of Mass
For the change of the concentration Q, of com-

ponent k,
pdc]C/dt= — divJfc (k= 1, 2, • • • , »). (1)

3 P. Mazur and J. Th. G. Overbeek, Rec. Trav. Chim. Pays-
Bas 70, 83 (1951).
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Here Ck= Pk/p, where pk is the density of k, and p is the
total density; the flow Jfc of substance k is denned*
with respect to the center-of-mass movement v

~v) (£=1,2, ••-,«), (2)

where v* is the velocity of k. The left-hand side of (1)
contains the (barycentric) substantial time derivative

<*/<&= a/aH-v-grad. (3)

B. Law of Conservation of Momentum (Force Law)

prfv/#--gradP-f-i: F*«. (4)

Here P is the pressure and F* is the external force per
unit mass on substance k. We have, in our case,

FA=e*E+g (*= 1,2, ' • - ,« ) , ' (5)

where e* is the charge of k per unit mass, E the electric
field strength, and g the centrifugal (gravitational) force
per unit mass. Coriolis forces do not need to be taken
into account when g is sufficiently uniform, i.e., when
the dimensions of the vessel are fairly small compared
with its distance from the rotation axis. (Coriolis forces
would anyway not contribute to the entropy production,
but the Onsager relations might be impaired, and new
cross-effects arise.)

C. Law of Conservation of Energy

In the absence of heat flow, this law has the form

Fi- JA, (6)

where u is the (internal) energy per unit mass (specific
energy).

IX The Second Law (Gibbs' Relation)

The second law is

(7)

where T is the temperature, s the specific entropy, and
ftt, the chemical potential (partial specific Gibbs func-
tion) of substance k.

The entropy balance equation follows when cft from
(1) and « from (6) are introduced into (7) :

pds/dt— — divJs+<j-. (8)

The change of entropy is seen to be the result of an
entropy flow

]£ (9)

* Flows and electrical currents will be understood as flow
densities and current densities (i.e., they are counted per unit
area) throughout this paper.

and an entropy production of source strength a,

7V=£ JrXk, (10)

where

= 1 2 (11)

The entropy production a (10), which is essentially
positive, measures the irreversibility of the process. It is
the starting point of further considerations.

IIL THE ENTROPY PRODUCTION AT MECHANICAL
EQUILIBRIUM AND VANISHING VOLUME FLOW

Equation (10) for the entropy source strength a may
be modified for the following two reasons. In the first
place, we can assume that the system is in mechani-
cal equilibrium. Then, according to a theorem of
Prigogine,1'2 Eq. (10) for the entropy production re-
mains invariant when we choose in (2), instead of v,
any arbitrary reference velocity. For our purpose zero
is the best choice, or, in other words, we employ ab-
solute flows

(k= 1,2, • • . ,» ) (12)

(13)

in the entropy production a from

(It may be noted, incidentally, that at mechanical
equilibrium, i.e., the left-hand side of (4) vanishing, it
follows from (4) and (5) that

gradP= gp,

because electroneutrality,

«
S Ptfc-0,

(14)

(15)

can be assumed.)
In the second place, we can further modify the

entropy production <r by introducing the boundary
conditions for a liquid contained in a vessel, which may
be stated as the vanishing of the total volume flow
through a section (cf. appendix)

(16)

We shall from now on restrict ourselves to the region
in the vessel where concentration gradients are neg-
ligible. We have then, because we have also assumed
uniform temperature, for (11),

Xfr=FA-%gradP, (A=s l ,2 , . - - , n ) , (17)

where % is the partial specific volume of k.
With (16) Jn° can be eliminated from (13). This
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gives, on introducing (17) and (5),

(18)

an expression which, can be rewritten in the alternative
form

7V=I-E4-J-g, (19)

with the electrical current

n

fc=

and the total mass flow

m-l

(20)

The last form follows from. (16) and the definition of
center-of-gravity velocity

The fact that this velocity occurs now in o- is a result
of the specializations in this section. This is not in
contradiction with the fact that in general v gives no
contribution to <r (see Eq. (10)).

IV. THE PHENOMENOLOGICAL LAWS

The expressions for the entropy production (18) and
(19) have the form of a sum of products of so-called
"fluxes" and "forces." In the thermodynamics of irre-
verisble processes, linear relationships are assumed
between these fluxes and forces, which are called
phenomenological laws. From (18) we obtain

,»-!) (22)

with, between the phenomenological coefficients, the
Onsager relations4

ditj=(ijk, (.k,y=l, 2, • • -,n— 1), (23)

which follows from the time reversal invariance of the
equations of motion of individual constituent particles
("microscopic reversibility"). With the fluxes and forces
of (19), the phenomenological laws are

g, (24)

I, (25)

with the Onsager relation

5i2=02i- (26)

*L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931);
H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945), or, Philips
Research Rept. l, 185 (1945).

The following relations exist between the phenomeno-
logical coefficients:-

k.i=l

i=£ (l-oy/o«)

022 =

ft-l

(27)

(28)

(29)

The Onsager relations have been used in these ex-
pressions. Since <j is positive definite, we have in-

(21) equalities

[ akj \ =
-l)L (30)

etc., between the phenomenological coefficients.

V. THE PHYSICAL MEANING OF THE PHENOME-
NOLOGICAL COEFFICIENTS AND OF

THE ONSAGER RELATIONS

We shall now consider the physical meaning of the
coefficients in (24) and (25), and of the relation (26).

The diagonal coefficients b\\ and 622 are the specific
electric conductivity and the sedimentation rate in a
short-circuited vessel, because from (24) and (25) it
follows that

(I/E)^0=&n, (31)

The cross-coefficient bn is connected with the sedi-
mentation phenomena, viz., the sedimentation potential
and current. For both effects two definitions can be
given. The sedimentation potential is defined as the
electrical field per unit centrifugal force (or sometimes
per unit total mass flow) in the stationary state of
zero electrical current. From (24) and (25) the effect
follows immediately:

(E/J)r_o= - (34)

The sedimentation current is the electrical current per
unit centrifugal force (or per unit total mass flow) in
the absence of an electrical field (i.e., in a short-circuited
vessel). In formulas

„— 7i,n (3S1iQ— "12) W**/

=0=&12/#22. (36)

The other cross-coefificient, bn, is connected^with the
electrophoretic phenomena. We define the barycentric
electrophoresis coefficient as the mass flow per unit
electrical current (or per unit electrical field) in the
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absence of centrifugal forces. This gives from (24) and
(25)

o=62i/6„, (37)

0=621- (38)

The other electrophoretic phenomenon has no conven-
tional name. It is the gravitational field per unit elec-
trical field (or per unit electrical current) in the station-
ary state of zero mass flow. Its magnitude is

(g/E),_o—

(g/I) .7=0= ̂ «

(39)

(40)

It is clear that the Onsager relation (26) connects a
sedimentation with an electrophoretic phenomenon. We
have, for instance, from (33), (37), and (26),

the connection between sedimentation potential and
barycentric electrophoresis. Similar Onsager connec-
tions exist between (34) and (40), between (35) and (38),
and between (36) and (39), In practice, usually the
sedimentation potential (33) and the barycentric elec-
trophoresis coefficient (38) are measured. When the
Onsager relation (26) is employed one finds the following
connection between these two effects and the electrical
conductivity coefficient (31) :

(42)

Besides the ordinary electrical and material con-
ductivities (31) and («52), one could measure these con-
ductivities in the stationary states of zero mass flow
and zero electrical current. The electrical conductivity
in the stationary state of zero mass flow follows from
(24) and (25)

(I/E) Ja0—61 (43)

The sedimentation rate in the stationary state of zero
electrical current is

= 622- (612621/611). (44)

In practice, not all the coefficients defined in this
section are measured. The usual ones are the ordinary
electrical conductivity (31), the sedimentation potential
(33), the sedimentation current (35), the electrophoresis
usually in the form of (38) but less frequently also as
(37), and finally the sédimentation rate at zero elec-
trical current (44), because the condition of zero
electrical field would rather complicate the sedimenta-
tion experiment.

From (31) and (33) or from (38) the coefficient
6i2(=&2i) can be calculated. The coefficient 622 should
be determined from (44) in combination with (31) and
(38) or directly from (32) if the experiment with zero
electrical field can be done.

VI. THE CASE OF A COLLOID

We can apply the general formalism of the preceding
sections to special cases. Let us consider a mixture of
four components (w = 4), of which three (m=S) carry
electrical charges. We shall assume that the particles of
the first charged component (the colloid) are very much
larger than those of the other three. The second and
third components are ions of opposite charge. The
fourth component is a neutral solvent.
* All relations derived in the previous section apply to
this system. We shall prove, however, that in some
limiting cases these formulas may be reduced to a new
form. For the system considered here, Eqs. (27)-(29)
can be written in the following way, if (12) and (22)
are taken into account :

(45)

612= L (46)

(47)

As a rule (l~Vj/vt) is of the order 1, and (vi/E)^ is
not very much smaller than (v2/E)0=0 and (vg/E)^.
Consequently the second and third terms on the right-
hand side of (46) may be neglected provided that

Pi»p2 and Pi^>p3, (48)

conditions which are frequently fulfilled in colloidal
systems. If these conditions are satisfied, the second
and the third term of (47) may be neglected a fortiori.
This is not possible with (45), where the terms contain
factors e} (the specific charges), which, on account of
the condition of electroneutrality (15), compensate the
effect of conditions (48).

It therefore follows that the expressions (46) and (47),
or the equivalent (28) and (29), can be simplified, with
the aid of conditions (48), to

=(1 —

622= (l—

(49)

L (1— f*A*)«i*. (SO)
k=l

From (22) and (25), one obtains, employing these re-
lations and only the dkj occurring in them, the following
formula for our limiting case :

which connects the total mass flow J with the flow Ji°
of the colloid particles alone. This is a very important
special case for colloidal systems, and we shall give a
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few results which can be derived from the general
formalism of the preceding section, employing the
approximation (51).

Equation (42), for instance, becomes then,

(Ji°/E)ff=o= -a/EWE/gCl-V*)}/-o. (52)

At the left-hand side we have now the ordinary elec-
trophoresis coefficient, instead of the barycentric elec-
trophoresis coefficient. At the right-hand side the sedi-
mentation potential is now expressed with respect to a
modified centrifugal field instead of the centrifugal
field g.

Similar formulas for colloidal systems could be de-
rived from the other results of Sec. 5, employing the
approximation (51). The first members of (32) and (44),
for instance, take, on employing (51), the form

(Ji°/A(l-»iAi)>i-o (53)

of the quotient of the flow of colloid particles and the
reduced centrifugal field.

An important conclusion can be drawn from the
formula (49), because it shows the influence of con-
duction relaxation on sedimentation and electrophoresis
phenomena. If relaxation exists, it manifests itself in
the coefficients aw, ais and in contributions to the
coefficients anj 022, »33, and 023. All relations such as
(52), which connect a sedimentation phenomenon (de-
pending on biz) with an electrophoresis phenomenon
(depending on bzi) are ultimately Onsager relations (26).
The value of the coefficients biz and bzi is given by (49).
We can draw the conclusion that relaxation phenomena
contribute always to both the sedimentation and the
electrophoresis phenomena in exactly the same way.

Furthermore, even when the approximation (49) is
not valid, this conclusion holds. To show this, we may
remark that, in the first place, our conclusion is correct
for barycentric instead of ordinary electrophoresis, as
can be seen, for instance, from the Onsager relation (42)
(of which (52) was the approximation considered

above). In the second place it is clear that if, in the
general case, ordinary electrophoresis is affected by
relaxation phenomena, this will also be the case for
barycentric electrophoresis, and consequently (e.g.,
(42)) for sedimentation phenomena. Thus, if relaxation
exists, its influence should be taken into account in the
interpretation of sedimentation experiments,

VII. APPENDIX

The condition (16) of zero total volume flow can be
connected with, other physical characteristics of the
system in the following way.

For the densities and the partial specific volumes,
one has the identity

(54)

From this follows

W=0. (55)
k k

From this relation and the conservation of mass

dpk/dt= — divJfc0= — divpfcVfc (56)

the following expression is obtained:

div (57)

At the right-hand side between the parentheses one
recognizes a substantial derivative of the partial specific
volume vk with respect to the velocity VA. It vanishes if
we assume that % does not appreciably depend on
pressure and concentrations. Then the divergence of
(16) turns out to be zero, and therefore also (16) itself.
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