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§ 1. INTRODUCTION

It has already been shown in chapter II that the stability of hydrophobic colloids
is largely governed by the interaction of their particles. If a repulsion of sufficient
strength exists between the particles, a sol is stable; if this repulsion is absent or even
reverted into an attraction, the stability is lost and the system coagulates.

The interaction of colloidal particles is supposed to contain two components. One,
the repulsive factor finds its origin in the electrochemical doublé Jayer. The other com-
ponent is the general LoNDON-VAN DER WAALS attraction.

The stability of colloids is not a question of quality to be answered simply by "yes"
or "no", but a question of quantity. A measure of the stability is found in the velocity
of coagulation, which may vary from very quick (flocculation within a few seconds) to
immeasurably slow. Consequently for a complete discussion of the stability the kinetics
of coagulation have to be taken into account.

In this chapter VI the interaction between colloidal particles will be treated mainly
from a theoretical point of view.

The kinetics of flocculation are discussed in chapter VIL Chapter VIII gives the
synthesis of these two fields resulting in a theory of the stability of colloids 2. This
theory is compared with experiments. Moreover, as far as experimental data on stability
exist which are not yet related to the theory, they will also be treated in chapter VIII.

§ 2. FREE ENERGY OF A SYSTEM OF ELECTROCHEMICAL
DOUBLÉ LAYERS

A problem of interaction can be treated by considering either the energy of
interaction or the force derived from this energy. In our case the treatment of the
energy is to be preferred, among other things, because the interaction has to be
compared to the energy of the BRownian motion. The force of interaction can always
be found easily by differentiation of the energy with respect to the distance. Because the
doublé layer is a system in thermal equilibrium we are mainly concerned with its f ree
energy (or free enthalpy, which is practically the same in condensed systems), not with
its total energy, as the free energy gives a measure of the work that can be performed.

1 The contents of ihis chapter have been extensively discussed between the author and G.K. JONKER,
S. A. TROELSTRA, and E. J. W. VERWEY of the Philips' Research Laboratories, Eindhoven.

- For a more detailed discussion of this theory, especially for the subjects of chapters VI and VIII
cf. E. J. W. VERWEY and J. TH. G. OVERBEEK, Theory of the stability of lyophobic colloids,
Amsterdam 1948.
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In chapter IV the free energy of the doublé layer has been treated extensively. Two
extreme cases have been considered there, one, the electrocapillary case (chapter IV,
§ 3a, p. 119) where the doublé layer was formed by an external current and the other
(chapter IV, § 3b, p. 122), the reversible one, in which the doublé layer was formed by
adsorption of ions (or electrons in the case of redox-equilibria) from the solution.

Evidently in colloidal systems the possibility of charging by an external current
is absent l and only the second method remains,

By straightforward thermodynamic reasoning it has been proved in chapter IV
(eq. (29) p. 123, eq. (70, 71) p. 140) that the free energy of the doublé layer, or ofasystem
of doublé layers, is equal to

doublé layer

O
where '^ is the potential differente between the two phases, assuming arbitrarily that
this potential difference is zero at the zero point of charge. Q is the charge of the surface.
'^o is the doublé layer potential after equilibrium has been established.

The significance of eq. (1) might seem doubtful to the reader who remembers that
the potential difference between two phases is not accessible to experimental deter-
mination. It should, however, be pointed out that changes in this potential difference
can be determined experimentally and, given our definition of the zero point of ba, <^0

is in fact only a change in the potential difference between two phases. For a more
detailed discussion of this question the reader is referred to chapter IV § 3, p. 118.

A second formulation for the free energy of the doublé layer has been derived in
chapter IV, § 4f, p. 139. This formulation is based on the imaginary charging process
used in the DEBYE and HÜCKEL theory of strong electrolytes, in which the charge of all
the ions (and electrons) in the system is gradually increased from zero to their normal
value. If the stage of the charging process is indicated by X, Xe; being the momentary
charge of an ion with normal charge e;, X increases from O to 1. According to eq. (76)
of chapter IV p. 142 the free energy of the doublé layer is theh given by

layer (2)

O
the integration being carried out over the whole solution phase at constant surface
potential <^0. In eq. (2) p' denotes the charge density, <\>' the potential at stage X and dV
3. volume element in the solution. The potential ij/ is considered to be zero far away
from all the interfaces.

G(0) is zero for a flat doublé layer or for two parallel flat doublé layers, but it has
a finite value in the case of curved surfaces.

Although physically the two equations (1) and (2) are completely equivalent2,
in some cases eq. (1) and in other cases eq. (2) is more suitable in mathematical respects
and we shall always apply that equation which leads most easily to the purpose.

1 Even if an external current could be used in the preparation of the sol, the unavoidable leakage
would cause these charges to disappear very soon after the formation.

2 H. B. G. CASIMIR, in E. J. W. VERWEY and J. TH. G. OVERBEEK, Theory of the stability of hyd.ro-
phobic colloids, Arasterdam 1948 pp. 60, 63; S. LEVINE, Phil. Mag., (7) 41 (1950) 53.
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The equilibrium value of the surface potential ^o is completely determined by the
composition of the two phases. More specifically, it is linearily dependent upon the
difference in chemical potential |J.; of the potential determining ions in the two phases.
Consequently (cf. chapter IV, § 3d, p. 124, § 6, p. 159).

Zi e d ^0 = AA v-i (3)
or . Av-i ...

<JJ0 = const. + • (4)
Zi e

The constant in eq. (4) which is simply related to the chemical potential at the zero
point of charge, is not dependent upon the geometrical configuration of the system.
Consequently ^0 is

 als° independent upon configuration, and the interaction of doublé
layers, involving changes in configuration (distance) should be studied at a constant
value of <Jj0 as far as equilibrium situations are involved and provided the bulk concen-
tration of the ions i does not change materially during interaction.

It may be, however, that during a rapid interaction, like that occurring during a
BROWNian encounter of two sol particles, thermodynamic equilibrium is not main-
tained. In that case it is impossible to deduce the free energy of interaction from equa-
tion (1) or (2). Perhaps the most obvious form of disequilibrium is a complete lack of
exchange of ions (or electrons) between the two phases, which means that the surface
charge remains constant in contradistinction to the equilibrium case, where the surface
potential remains constant. Then the contribution to the free energy of the transition
of ions from one phase to the other need not be considered. The important part of the
free energy is then the work necessary to charge the surface in a reversible way starting
from zero charge. The charge of the potential determing ions is imagined to be trans-
ported gradually from the solution to the surface. After each small increase of the
surface charge the charges in the solution are allowed to rearrange themselves according
to a new equilibrium. In this rearrangement in the solution no work is lost or gained
and the electrical part of the free energy of the doublé layer can be written

<?.,..„ = = J>0 'dQ' (5 )

o
where <\>0' is the momentary surface potential and Q' the surface charge with Q as its
final value.

In some cases of interaction eq. (5) might be a better approximation than eq. (1)
or (2), although we shall more often base our treatment on the equilibrium case.

§ 3. THE INTERACTION OF TWO PARALLEL PLANE DIFFUSE
DOUBLÉ LAYERS

a. The distribution of charge and potential between two parallel flat plates

The distribution of charge and potential in one doublé layer has been treated in
chapter IV. We shall now extend this treatment to the case of two parallel doublé layers
which have approached each other until the diffuse parts of the two doublé layers
overlap each other to a measurable extent. This is the case when the distance between
the two surfaces is of the same order as the extension of the doublé layer, ljy. 1.

1 The symbols used in this chapter have the same meaning as in chapter IV except when the con-
trary is specifically stated.
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When two parallel surfaces, each hearing a doublé layer of the same sign,
approach each other to a distance where the two diffuse doublé layers begin to interfere,
neither of them can develop completely. As a consequence the potential between the
two surfaces nowhere reaches the level it has at a large distance from the surface. This

last-mentioned level will, as has been
done in chapter IV, be chosen as the
zero of potential.

On the surfaces the potential retains
the same value it has for a free surface
because this potential is completely deter-
mined by the thermodynamic equilib-
rium as expressed by eq. (4).

A simple consideration of the sym-
metry of the case shows that the minimum
value of the potential must be reached
just halfway between the two surfaces.
Fig. l shows schematically the course of
this potential.

In this and the following chapters,
we shall often be forced to restrict our

Fig. 1. Schematic representation of the electric
potential between two plates, in comparison with

that for a single doublé layer.

considerations to doublé layers of the GOUY-CHAPMAN type, neglecting the STERN correc-
tion 1. Calculations on the interaction of STERN-GOUY layers are still scarce and incom-
plete, and further developments in this direction will have to be awaited before they
can succesfully be applied to the problem of the stability of hydrophobic colloids. For-
tunately, many salient points can be treated from the point of view of simple diffuse
doublé layers and in more complicated cases it is often possible to take account of the
influence of the STERN-layer in a qualitative or semi-quantitative way.

For doublé layers of the GOUY-CHAPMAN type the course of the potential between
the two surfaces can again be described by the combination of the POISSON and the
BOLTZMANN equations (cf. chapter IV, § 4a, p. 126). The only difference from the case
of a single doublé layer is found in the boundary conditions. There the boundary
conditions were that the potential and its derivatives are all zero far away from the
surface, and in the case of interaction we only know that halfway between the plates the
potential has a minimum value so that its first derivative is zero.

The equation to be solved is:

( z- e. <\> z+ e 4>\
Pf~ ~ IfT lrc_ z_ e kl - n+ z+e K1 (6)

„~ '

subject to the boundary conditions

<l> = <\>d for x. = d

—- = O for x = d.
dx

(7)

1 Cf. Chapter IV, §4. p. 126.
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The coordinate x is measured from one of the plates. The distance between the
platesis equal to 2 d. The other symbols have the same meaning as in chapter IV (p. 115).

The first integration of (6) leads to 1

dib 1/8* W l/ ~v- —±-^ —e-d~ I_L+^- ,av£ f = _ y * J L ï i | „_e "T + lue *r _ „_e *r w (8)
d* e

It woüld be possible to carry out the second integration of (8) numerically or graphi-
cally, but owing to the great number of essential variables, (valency type and concen-
tration of electrolytes, surface potential, distance between the plates) this would lead
to a tremendous amount of work before any useful survey of the important cases could
be obtained. Therefore some simplifications are introduced.

In the first place eq. (8) can be integrated when the potential is small everywhere,
Eq. (8) then reduces to

'-4<2d (9)

~\/4r.e*(n+ z\ + n_zj)
where x = l —

s «7
and the integration leads to

cosh x (d - x)
U A atl * = o - .cosh x d cosh

10

Although these expressions are useful in certain cases, they are of little help in
the understanding of colloid stability,

The most outstanding feature of the stability of hydrophobic solsnis the great
influence of the valency of electrolytes, especially the counterions, as expressed by the
rule of SCHULZE and HARDY (c/, chapter II, § 5 c. l, p. 81), Now in eq, (9) and (10) the
valency of the electrolytes is completely expressed in the quantity x and there the roles
of the valency of positive and negative ions are perfectly symmetrical,

Consequently, in order to get an explanation of the flocculation values of sols on the
basis of the diffuse doublé layer picture, the approximation of small potentials is of
no use. Another simplification however is allowed. For high values of fy, the value of
eq. (8) is almost wholly determined by the positive powers of e, whereas the negative
powers are so small that they are practically without influence. This is in accordance
with the fact that the flocculation value of a sol is practically independent of the valency
of the ions bearing the same sign. as the colloidal particles. Thus no essential features
are lost in restricting the discussion to the case of symmetrical electrolytes, which gives
a considerable matnematical simplification. Calling the valency of this electrolyte z
and its concentration n, eq. (8) simplifies to

Introducing now the variables
z e <]> „ z e <\>0 z efya
~W'Z= kT ' ~~kT~'

and E = x x.
1 The negative sign has to be used for positive values of ̂  when O ̂  x <. d.
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we may write

dY
= - V 2 cosh y - 2 cosh U (H)

This differential equation, when integrated between the values l; = O and i; = y.d,
leads to a relation between the surface potential (Z), the potential halfway between the
plates (U) and their distance (x<f). This relation can be expressed by means of elliptical
integrals and is

- -^~— n2 /Jxd=2e a r c s n e (12)

whereF (£,9) —-
. -/r sm'a

2.0 J.O 4.0 5.0 6.0 «d

Fig. 2. Potential ('.jj <j) half-way between the plates as a
function of the plate distance (2d) for different values
of the surface potential (iji0). In the figure the values of

is an extensively tabulated func-
tion 1. Eq. (12) has been tabulated
by VERWEY and OVERBEEK 2. Their
results are represented in Table l
and Fig, 2.

For the further developments
it is useful to consider the case of
small interaction when the two
surfaces are still relatively far
apart. Then the potential between
the two surfaces can be given in a
good approximation by a simple
summationof two independent and
undisturbed doublé layers as is
illustrated by Fig. 3.

In this case we may set
U = 2 Y'd

in which fy'a =
kT Y' H

— is the pot-
z e

n- -
kT

2Q J)

Z= —j-^r and Y.d are given.

ential of a single doublé layer at a
distance d from the surface. Now
according to eq. (51) of chapter IV
this Y'a is equal to

3 p Z\l— l

Y'd = 4 y e ~ in which y = ——.——

and consequently for large values of xd (and any value of Z)

U = 8 y e -xrf (13)

1 c f . E. JAHNKE and F. EMDE, Tables of functions, 4th ed., New York 1945, p. 52 et seq.
2 E. J. W. VERWEY and J. TH. G. OVERBEEK, Theory of the stability of lyophobic colloids,

Amsterdam 1948, p. 68.



TABLE l

xd AS A FONCTION OF Z AND U ACCOEDING TO EQ. (12)

z = ze'^r> i
kT

\z-u=o.i

Z=10

9

8

7

6

5

4

3

2

1

0.00434

0.007324

0.01208

0.0199

0.03275

0.05410

0.08915

0.1471

0.2435

0.4353

0.5i 0.8706

Z-U=0.3

0.00836

0.01379

0.02273

0.03748

0.06179

0.10185

0.1680

0.2774

0.4643

0.8551

Z-U=Q.6

0.01337

0.02208

0.03642

0.06005

0.09900

0.1632

0.2692

0.4455

0.7513

1.532

1.558
1

U=9

0.02042

-

U=8

0.04374

0.03367

7

0.08128

0.07211

0.05551

i

j

6

0.1429

0.1340

0.1189

0.09154

5

0.2444

0.2356

0.2210

0.1961

0.1509

4

0.4117

0.4030

0.3885

0.3644

0.3232

0.2488

3

0.68795

0.6792

0.66475

0.6407

0.6010

0.5333

0.4105

2

1.148

1.139

1.1245

1.101

1.061

0.9955

0.8837

0.6813

1

1.962

1.953

1.939

1.915

1.876

1.811

1.702

1.518

1.178

0.5

2.721

2.712

2.698

2.674

2.635

2.570

2.462

2.280

1.958

1.279

0.25

3.440

3.431

3.417

3.393

3.354

3.290

3.181

2.998

2.680

2.035

1.309

0.1

4.366

4.357

4.343

4.318

4.280

4.215

4.107

3.924

3.608

2.971

2.241

£
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Inspecting now for a
moment eq. (8)or eq. (11),
one can see that the slope of
the potential curve is the
smaller, the larger the value
of <\>d (or U). As the slope at
the surface is directly
proportional to the surface
charge, this charge dimi-
nishes with increasing in-
teraction and even goes to
zero in the limiting case
when the two surfaces come
into contact. The same
conclusion follows from
the physical picture of
the interaction of doublé
layers. As a consequence
of the neighbourhood of
two doublé layers each of
them separately cannot
develop to its full extent,

is equivalent to saying that the total charge in the doublé layer is less than

Sxx

Fig. 3. Electric potential function between two plates (Z = 8) for
small interaction (v.d — 2.5). Approximately, the potential can be
built up additively from the electric potential functions of the two

single doublé layers separately (dotted lines).

which
without interaction.

The mathematical expression for
the doublé layer charge is quite simple.

4K\dx/ x =

T / n E kT l /
\ -2lT~' \ 2 cosh 7, - 2 cosh U (14)

Fig. 4 shows the dependence of the
surface charge on the separation distance
of the two surfaces for a number of values
of the surface potential. It is seen how,
especially for large surface potentials, the
charge changes only appreciably when

the distance is small compared to — ,
x

b. The free energy of two parallel
doublé layers and the repulsion

between the surfaces bearing them

Having now established the relations
between charge, potential, and the di-
stance between the two surfaces, it is
possible by application of the equation

2=6

Fig. 4. Dependence of surface charge
on the distance between two parallel

doublé layers.
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(1) or (2) (see p. 246), to determine the free energy of the doublé layer system1.
Calling the free energy per cm2 of each of the two plates 2 G, the integration of eq. (2)
leads to

- E are sn e (15)

_
in which E (k, 9) = | l l - A:2 sin2a da

ƒ>

| l/
»/

For x d —>-cvo this expression is equivalent to the one found already in chapter IV
eq. (73) p. 141 viz.

G^c, = -^^(4coshA-4). (16)
x V 2 l

Now the stability of colloids is not determined by the value of the free energy itself
but by the change in free energy when the two surfaces approach each other from an
infinite distance of separation.

This change of the free energy is equal to the amount of work that has to be per-
formed against the forces arising from the interaction of doublé layers.

Therefore we define the potential energy of repulsion (repulsive potential) VR
per cm2 cross section of the plates

F*=2(G-Goo) (17)
As the reciprocal thickness of the doublé layer, x, is proportional to the valency z

and to the square root of the concentration, ^ n of the electrolyte, both eqs. (15) and
x

(16) can be expressed as —- times a function of U and Z- By eq, (12) x.d is given as a

function of U and Z, and consequently if this function is known, VR can be calculated
as a function of x d.

In Table 2 we give the values of f (U, Z)> this function being defined as
z*

f ( U , Z ) = — VR (18)
X

whereas for convenience the corresponding values of xd have also been given.
The function f (U, Z) is proportional to the square of the absolute temperature and to the dielec-

tric constant. Table 2 gives its values for water at 25° C, viz, for E = 78.55 and T = 298.1. When the
table has to be applied to another temperature 7^ and a dielectric constant tt the values of f (U, Z) have
to be multiplied by gl T* /78.5S (298. l)2.

Fig. 5 gives a graphic survey for part of the values of Table 2, especially for the
cases of large potentials and strong interaction. In the small table in the figure the units
of the ordinate have been indicated for a number of relevant values of x and the valency.

1 We follow here the treatment given by VERWEY and OVERBEEK, l.c. Work by A. J. CORKILL and
L. ROSENHEAD, Prot. Roy. Soc. London, A 172 (1939) 410 and older work by S. LEVINE and
G. P. DUBE, Trans. Faraday Soc., 36 (1940) 215, on the same subject are believed to be incorrect
because the influence of entropy and of the chemical energy involved in the passing of ions from one
phase to the other is not sufficiently taken into account.



TABLE 2

f (U, Z) ' (z'2!y.) Vftin 10~7 dynes, and corresponding values of y.d, for different values of Z ze. yJkT
(U = zeyd'kT; Vu ~ repulsive potential due to the doublé layer interaction for two parallel plates per cm2 plate surface).

The numbers given have been computed for a temperature of 25J C and a dielectric constant of 78.55.

Z= 10

Z = 9

Z = 8

Z = 7

Z==';6

Z = 5

Z = 4

Z = 3

Z = 2

Z = l

f (U,Z)
xd

f (U, Z)
xd

f(t/,Z)
y.d

f (^ Z)
xd

f(U,Z)
y.d

f ( U , Z )
y.d

i(U,Z)
y.d

f(t/ ,Z)
xd

f (U, Z)
y.d

f(U,Z)
y.d

u=z

268.3
.0000

161.5
.0000

96.52
.0000

57.13
.0000

33.27
.0000

18.83
.0000

10.13
.0000

4.962
.0000

1.993
.0000

.4682

.0000

U =
Z— 0.1

228.2
.00434

135.2
.0073

80.56
.0121

47.46
.0199

27.47
.0327

15.32
.0541

8.07
.0891

3.793
.1471

1.413
.2435

.271
.4356

U =
Z— 0.3

192.6
'00836

115.2
.0138

68.56
.0227

40.18
.0375

23.04
.0618

12.69
.1018

6.51
.1680

2.913
.2774

.966
.4643

.135

.855

U =
Z— 0.6

160.0
.0134

95.6
.0221

56.60
.0364

32.89
.0600

18.66
.0990

10.07
.1632

4.97
.2692

2.061
.4455

.584

.751

.0348
1.532

U = 9

127.1
.0204

U = 8

75.4
.0437

76.3
.0337

[7 = 7

44.1
.0813

44.3
.0721

44.8
.0555

U = 6

25.4
.143

25.4
.134

25.4
.119

25.8
.0915

U = 5

14.1
.244

14.1
.236

14.1
.221

14.17
.196

14.38
.1509

[7 = 4

7.36
.412

7.36
.403

7.36
.388

7.36
.364

7.39
.323

7.52
.2488

U = 3

3.42
.690

3.42
.679

3.42
.665

3.42
.641

3.42
.601

3.43
.533

3.50
.4105

U = = 2

1.26
1.148

1.26
1.139

1.26
1.124

1.26
1.101

1.26
1.061

1.26
.995

1.26
.884

1.291
.681

U -i

.26
1962

.26
1.953

.26
1.939

.26
1.915

.26
1.876

.26
1.811

.26
1.702

.26
1,518

.265
1.178

[7=^0.5

.06
2.721

.06
2.712

.06
2.698

.06
2.674

.06
2.635

.06
2.570

.06
2.462

.06
2.280

.06
1.958

.063
1.279

LT =
0.25

.015
3.440

.015
3.431

.015
3.417

.015
3.393

.015
3.354

.015
3.290

.015
3.181

.015
2.998

.015
2.680

.015
2.035

U----0.1

.0023
4.366

.0023
4.357

.0023
4.343

.0023
4.318

.0023
4.280

.0023
4.215

.0023
4.107

.0023 :
3.924

.0023
3.608

.0023
2.971
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ergs/cm
rgs x 10~'/cm2

rgs x 10~*/cnif

rgs /9 cm'
rgs x 10~V$cm2

rgs x 10~2/9cm2
rgs

Before continuing the develop-
ment of the theory the reader's at-
tention is drawn to the absolute
magnitude of this repulsive potential.
For an electrolyte concentration of
l/1000normal,that is for x = 10" the
repulsive potential for intermediate
values of x (f is of the order of l erg/
cm2 which means that an interaction
energy larger than -kT (= 4 • 10~14

ergs) is reached for a cross section
larger than (20 A)2

; proving that the
energies corcerned may be expected
to be significant for colloid stability.

c. The force between two flat
doublé la vers and anapproxiniate

expression for the repulsive
potential

LANGMUIR 1, DERJAGUIN a and
BERGMANN, LÖW-BEER, and ZOCHER s

have. also considered the repulsive
force between two doublé layers.
Although these considerations add
nothing essential to the developments
of the preceding sub-paragraph, we
reproduce here a simple derivation of
the force between the plates because it leads to an unexpectedly simple equ at ion which
can form the basis for a useful approximate expression for the repulsive potential.

Consider again two infinitely large flat plates with liquid between them, which
liquid is in free contact with a reservoir containing an infinitely large amount of liquid
at a pressure p0 and a concentration of n molecules of electrolyte per cm3. The electric
potential of the reservoir is supposed to be zero. The plates are kept at a certain distance
d from each other by the exertion of a pressure P per cm2.

As the whole system is considered to be in equilibrium the gradiënt of the hydro-
static pressure and the force on the space charge balance each other at any point of the
liquid phase.

dp+ P d $ = 0 (19)

By introducing POISSON'S equation and specializing to the space between the two
parallel plates (19) may be transformed into

Fig. 5. Repulsive potential as a function of x d,
for strong interaction (small y. d)

dp s d^ di>

dx 4 TT dx3 dx
= O (20)

1 I. LANGMUIR,/. Chem. Phys., 6 (1938) 893.
•2 B. DERJAGUIN, Trans. Faraday Soc., 36(1940) 203.

3 P. BERGMANN, P. LÖW-BEER, and H. ZOCHER, Z. physik. Chem., A 181 (1938) 301.
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which after integration results in

or, in words: the difference between the hydrostatic pressure and MAXWELL'S stresses
is a constant. This constant is equal to pd , the hydrostatic pressure midway between
the plates, as there the potential gradiënt is ze.ro. The. difference between this pressure
pa and p0 is the force driving the two plates apart as a consequence of the doublé layer
interaction, and can be evaluated by an integration of eq. (19) between the pressures
PA and p0 or between <]>d and <l>0 = 0.

(22)

<b = 0 O

With (c/, eq. (6))
P = — 2 enz sinh

eq. (22) can be easily integrated leading to the result
P = 2 n kT (cosh ze <\>d jkT — l ) (23)

This equation, although it looks very simple, cannot be easily used to construct
the curves of the repulsive potential because the relatton between fyj and d is far from
simple (eq. (12)). Only in the approximation of weak interaction can eq. (23) be easily
integrated by the application of eq. (13)

ze <l>d , -xd
e (13)

kT
and the first approximation of eq. (23)

P = n kT (ze ̂  /W)2 (23')
d d

, - 2 v.d , 64 n kT -2v.d
VK = - 2 \ P Ad = 64 n kT y2 e d (2<f) = - - y2 e (24)

CO OO

a relation 1 to which we shall return in the explanation of the rule of SCHULZE and
HARDY (see chapter VIII).

§ 4. THE INTERACTION OF TWO SPHERICAL DOUBLÉ LAYERS

a, General considerations

Although many characteristic features of the interaction of doublé layers, including
a general survey of the conditions of the stability of hydrophobic colloids may be derived
from our knowledge of the interaction of two infinitely large flat surfaces, in practical

1 A still somewhat more exact approximation is given by VERWEY and OVERBEEK, Theory of the
stability of lyophobic colloids, p. 97 and is

FR = —— y2 (l — tanh x d) (25)
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cases one always has to do with particles with limited dimensions and therefore the
need is feit for a model which essentially includes the finite dimensions of the particles.
The most simple model, is then given by the interaction of two sphertcal particles.

A first, though rather crude, approach has been made by HAMAKER 1. A better
approximation has been given by DERJAGUIN 2, and extensive calculations have been
published by LEVINE and DUBE ?. For a criticism of the physical basis of the work of
LEVINE and DUBE, however, see VERWEY and OVERBEEK 4, who gave the most extensive
calculations on the interactions of two spherical doublé layers now available.

It is impossible to solve the problem of two spherical doublé layers explicit.'y
because of mathematical difficulties. A purely graphical or numerical method seems
unpromising because the number of essential parameters (surface potential, thickness
of the doublé layer, radius of the particles, distance between the particles) is too large.
By the application of diverse methods of approach, however, it is possible to cover the
field of interest almost completely, as will be shown in the following subsections.

b. A general method for the estimation of the interaction of spherical
particles, when that between flat surfaces is known

DERJAGUIN 6 has indicated and applied an ingenieus method, deriving the interac-
tion of spherical particles from that of infinitely large flat plates of the same constitution.
His method is applicable when the range of this interaction is small compared to the
radius of the particles. The surface of the
spheres is divided into rings with their
centers on the axis of symmetry as
represented in Fig. 6,

Now the interaction of the spheres
is built up from the interaction of these
rings which are considered in pairs as
rings cut out of two parallel flat plates. If
the interaction energy of l cm2 of two flat
plates is denoted by V(H),Hbeingthe , - . . , - T1, • , , •,,• r., , •1 1 1 i • Fig. 6. Illustratmg the building up of the repulsion
distance between the plates, the interac- between two spheres out of the repulsion between
tion of two rings with radius h is given by quasi-parallel layers.

2 nh V (H) dh (26)
By integration of this expression from h = O to h = large, the total energy of interaction
is found. As the value of the integrand for large values of h is very small anyway (be-

1 H. C. HAMAKER, Chem. Weekblad, 35 (1938) 47 (C/, also Hydrophobic Colloids, Amsterdam
1938, p. 16); Ree. trav. chim., 55 (1936) 1015; 56 (1937) 3.

2 B. DERJAGUIN, Trans. Faraday Soc., 36 (1940) 203.
3 S. LEVINE, Proc. Roy. Soc. London, A 170 (1939) 145, 165; S. LEVINE and G. P. DUBE, Compt.

rend., 208 (1939) 1812; Trans. Faraday Soc., 35 (1939) 1125,1141; 36 (1940) 215; S. LEVINE,/. Chem.
Phys., l (1939) 831; S. LEVINE and G. P. DUBE, PM. Mag., (7) 29 (1940) 105; J. Phys. Chem., 46
(1942) 239.

4 E. J. W. VERWEY and J. TH. G. OVERBEEK, Theory of the slability of lyophobic colloids,
Amsterdam 1948, p. 188; Trans. Faraday Soc., 42 B (1946) 117.

6 B. DERJAGUIN, Kolloid-Z., 69 (1934) 155; Acta Physicochim. U.R.S.S., 10 (1939) 333; Trans.
Faraday Soc., 36 (1940) 203.
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cause of the relatively small range of interaction), the upper limit may be chosen as co
which simplifies the calculation. In the same approximation a dH may be substituted
for 2 h dh which leads to the following expression for the total energy of interaction Vt

Vt(H ) = T r a ƒ V(H)dH (27)

The nature of the forces between the particles is immaterial in this derivation provided
their range is small enough.

c. Application of Dcrjaguin's method to doublé layer interaction

Eq. (27) may be applied to doublé layer interaction when the range, which is of
the order of 1/x, is small in comparison with the radius (a) of the spheres, or when

1. For the repulsive function between flat plates DERJAGUIN himself used our•/. a
equation (25), the best approximation for small values of the surface potential.

The repulsive energy for two spheres is then found to be

sa
m l + e x p ( - x # 0 ) (28)

VERWEY and OVERBEEK 1 used the same method with the more exact expression (18)
for the repulsion between flat plates, by means of which they derived that the repulsive
energy Vu can be expressed as

VR = (29)

The function L is tabulated in Table 3 and represented graphically in Fig. 7,

TABLE 3
Z2

Values of L • 10' as a function of Z and x H,, L being — VR
a

xH„

0
0.10
0.20
0.30
0.50
0.70
1.00
1.20

i

7.50
6.90
6.35
5.85
4.96
4.06
3.04
2.54

1.50 1.91'
2.00
2.50
3.00

1.16'
0.71
0.43

3

16.02
14.5
13.1
11.9
9.78
7.98
5.91
4.86
3.67
2.37
1.44
0.86S

4

26.5
23.3
20.7*
18.61
14.85
11.96
8.73
7.13
5.29
3.25
2.08
1.25

5

38.46
33.0'
28.6
24.92
19.36
15.31
11.06
8.92
6.59
4.03
2.46
1.53

6

51.4
42.5
35.6
30.5
23.0
17.93
12.72
10.23
7.568

4.59
2.94
1.78

8

78.7
57.3
45.0
37.0
26.95

20.7
14.5
11.5
8.54
5.17
3.16
1.95

10

108.1
66.9
51.1
40.9
29.3
22.2
15.44
12.33
8.99
5.40
3.35
2.055

1 toe. cit. p. 140.
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Without going into details,
which will be considered in § 10
and in chapter VIII, we draw at-
tention to the fact that the interac-
tion is proportional to the radius
of the sphere and not toits square
as might on first sight be expected.

d, The interaction of two
spheres when the doublé layer

thickness is large

When the spherical particles
are small in comparison with the
thickness of the doublé layer, the
method treated in the foregoing
subsections breaks down comple-
tely, and another approach be-
comes necessary.

For this case a method has
been used by VERWEY and OVER-
BEEK l, consisting in a calculation
of the distribution of charge and
potential around two spherical
particles and a derivation of the
free energy of the doublé layer
system by application of eq. (1).
A drawbackof this method is that
it is only accurate if the surface y — _
potential is small, but a more z

general method is not yet available.
The results are represented graphically in Fig. 8. For complete calculations and an
extensive tabular review of the results the reader is referred to the original publication.

Again, as in the case when x a ^> l the repulsive energy is proportional to the
radius of the particles and of course is larger, the larger the potential of the surface.

oL

Fig. 7. The repulsive potential VR between two spherical
particles, when the exact expression for high potentials is
applied

e. Survey of the choice of the method to be applied in actual calculations on
spherical particles

As it would lead us too far to repeat the discussion on the regions of validity of the
different approximations given by VERWEY and OVERBEEK 2 — but on the other hand
an indication of the different limits of validity should be useful for future applications
— we give without proof an enumeration of the methods to be applied in the form of
a table.

1 loc. cit., p. 143.
- loc. cit., p. 139, 156.
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TABLE 4

Value of the surface potential

25
Small, i.e., < — mV

25
Large, i.e., > — mV

2

x a

xa > 10

10 > xa> 1

1 > x a

xa > 3

3 > xa> 0,5

0,5 > xa

Method to be applied for the calculation of the
interaction of two spherical doublé layers.

Eq. (28)

Graphical compromise between eq, (28) and Fig. 8,
as illustrated in Fig. 9 for x a = 3.

Fig. 8, § 4 d.

Table 3, Fig. 7.

The same, but the results become less accurate. The
accuracy is more favourable, the higher the
value of the surface potential.

Fig. 8, § 4 d.
The results become less and less accurate, the hig-

her the surface potential, and the higher the value
of x. a.

Fig. 8. Potential energy of repulsion between
two spherical particles for different values

of x a

E3f>'

0.4

0.3

02

0.1

0.8 1.2 Ho/o

Fig. 9. Repulsion curves for x a = 3
equation (28)
Fig. 8
best curve

§ 5. INTERACTION FOR OTHER FORMS OF PARTICLES

Although the essential features of doublé layer interaction are quite clearly given
by the cases of flat and spherical doublé layers, in practical applications other forms
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may be of interest. The coagulation of small particles against flat walls, investigated by
VONBUZAGH (see chapter VIII, § 7 b. l, p. 325) could probably be described by the
interaction of spheres with flat plates. The interaction in sols with elongated particles
(e.g,, V2O5, tobacco mosaic virus) points to the need of a theory for long cylindrical
particles. This has been treated by LEVINE and DUBE l.

§ 6. INTERACTION AT CONSTANT CHARGE OF THE SURFACES

Thus far the interaction of doublé layer systems has been treated as if thermody-
namic equilibrium were continuously maintained. This implies that the surface poten-
tial, fy , has been considered as a constant completely determined by the composition
of the electrolytic solution. The surface charge on the other hand, then changes with
the interaction. Now it is quite conceivable that this change of charge which implies
transition of charge carriers from one phase to the other needs so much energy of
activation, that the process is much slower than the time of a BnowNian encounter of
two particles. In that case during the interaction not the surface potential but the surface
charge should be considered as a constant.

The same is applicable when the charge of the surface does not rest upon an equili-
brium of potential-determining ions at all but depends for instance upon the dissocia-
tion of certain groups fixed at the surface, like S03H groups in sulphonated coal.

The whole treatment of interaction has to be based now on eq. (5) p. 247, because
the contributions (electrical and chemical) of the potential-determining ions drop out.
Fortunately, however, the resulting repulsion does not differ very much 2 from that for
constant potential which may be most easily proved by the use of the equation for the
repulsive forse (23), which is derived without knowing whether during interaction the
charge or the potentia] of the surface is kept constant.

When therefore in the following part the treatment is restricted to the case of
constant potential this is practically no restriction, constant potential and constant
charge leading to almost the same results.

§ 7. INTERACTION OF TWO DOUBLÉ LAYERS AT THE INTERFACE
BETWEEN TWO LIQUIDS. CASE OF EMULSIONS

In chapter IV, § 4c, p. 128 it has been shown that the doublé layer at the interface
of two liquids has a diffuse character in both phases. When one of the phases is an "oil"
with low dielectric constant and the other phase consists of water, the major part of the
potential drop occurs in the oil phase.

The interaction of two doublé layers of this type has a twofold interest.
1. In an emulsion, that is a dispersion of small liquid drops in another liquid, the

diameter of the drops may easily be so small that in the interior of the drops the two
doublé layers generated on opposite poles of the drops interfere. This causes, as has
been explained in § 3a, p, 247, a lowering of the charge of the doublé layer and conse-

1 G. P. DUBE, Indian J. Phys., 17 (1943) 189; see also: S. LEVINE, Trans. Faraday Soc., 42 B (1946)
102.

2 In fact, the repulsion at constant charge is slightly larger than that of constant potential.
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quently a decrease of the potential drop in the outer phase. This effect is illustrated in
Fig. 10, where the electric potential in a system consisting of a thin layer of an "oil"
between two water layers has been reproduced 1.

The potential drop in the water phase, already small when the oil phase is thick,
becomes still smaller when the oil is
present in the form of a thin layer.

2. In the second place the interaction
of the doublé layers of two droplets of
an emulsion will determine the stability
of the emulsion. A complete description
of this effect offering still more mathe-
matical difficulties than the interaction
of two spherical doublé layers as treated
in § 4 will not be aimed at, as a superfi-
cial consideration will already be sufficient
to demonstrate that the energy of in-
teraction between two droplets of an
emulsion is much smaller than that
between solid particles. This explains
why emulsions of two pure liquids are
never stable (cf. chapterVIII, §11, p.336)

\_^^ and why the addition of emulsifiers is
l """"'•— necessary to préparé stable emulsions.

Let us first consider the meeting of
two drops (radius a) of water in a con-
tinuous oil phase. In that case the
repulsive energy will be of the order of

x=0

Fig. 10. The interaction of two doublé layers at
the interface liquid/liquid. Phase 2 is the phase with
the lowest dielectric constant ("oil"). Curve a:both
phases infinitely thick; curve 6: the oil phase has a
thickness 2d = l /«„n; curve c: the oil phase has a

thickness 2d = l/2xun.

(cf. eq. (28))

in which 'oil are the dielectric
constant and the potential drop in the oil. As E oil <^ s wllter> this repulsion is much
smaller than that between solid particles in water, although ipoil may be fairly large.

When on the contrary two oil drops in a water phase approach each other, the work
of interaction will be about

V
and as to a first approximation

vator T wntor

Mvnter (29)

where n0 and n,„ are the concentrations of monovalent electrolytes in the two phases, the
repulsive energy becomes

o n
'?' "r7

which, as n, will usually be much smaller than nic, is still smaller than the repulsive
energy between two water droplets in oil.

1 E. J. W. VERWEY, Trans. Faraday Soc., 36 (1940) 192.



§ 8 INFLUENCE OF THE STERN CORRECTION ON INTERACTION 263

Fig. 11. Interaction of the diffuse
parts of two doublé layers consisting
each of a STERN layer and a diffuse

layer.

§ 8. INFLUENCE OF THE STERN CORRECTION ON THE INTERACTION

In order to complete the picture of the interaction of doublé layers, it is still neces-
sary to take account of the finite dimensions and the specific adsorbability of the ions
as introduced by STERN 1 (cf. chapter IV, § 4b, p. 127).

It has been mentioned in chapterIV, that the picture given by STERN should only
be considered as a provisional one, but experimental data from very different fields
(electrocapillary curve, chapter IV, § 5, p. 146, adsorption isotherms of potential deter-
mintng ions, chapter IV, § 6, p. 162, electrophoresis, chapter V, § 9b. l, p. 226, stability,
chapter VIII, § 4, p. 310) indicate that the GOUY-CHAPMAN theory of the doublé layer
becomes insufficient when either the potential or the
electrolyte content is high.

Retaining for the moment STERN'S theory it
should be asked how the interaction is modified by
the presence of a STERN layer. Considering again two
flat plates approaching each other, the primary effect
will be an interaction of the two diffuse doublé layers,
cf. Fig. 11. A direct influence of the two STERN layers
on each other will only occur when the distance
between the plates becomes of the order of atomic
dimensions and thus may usually be left out of
consideration.

The first effect of the interaction is a decrease
of the charge of the diffuse doublé layer, but, as is confirmed by a more detailed cal-
culation s when the interaction is not very strong the potential of the STERN layer ̂
will be practically unaffected.

This being the case, the whole interaction between two doublé layers may then
be described by the methods described in § 3 and § 4, with the only modification that
the surface potential fy0 has to be replaced by the STERN potential ^§, the value of
which may be determined from the distribution of the doublé layer on one plate only.

For considerations on the stability of colloids this implies the following important
points.
1. As 4*8 is usually smaller than <j;o, the very high potentials in the doublé layer, where

the applicability of BOLTZMANN'S principle in its simple form 3 is questionable,
are eliminated.

2. Even if <p0 is (or is nearly) independent of the concentration of indifferent electro-
lytes, 4>s Will strongly depend upon it (cf. chapter IV, § 4d, Fig. 5, p. 131) and in
comparing the stability for different contents of electrolyte this effect should be taken
into account.

3. Although in the diffuse doublé layer only the concentration and valency of the ions
are important, the value of the STERN potential ^§ is determined by specific proper-
ties of the ions, and this enables us to explain differences in the stability between ions
of the same valency type.

Especially for this last-mentioned reason a further development of STERN'S ideas
would seem well worth the trouble.
' (l / l/01 O. STERN, Z. Elektrochem., 30 (1924) 508. •

•2 E. J. W. VERWEY and J. TH. G. OVERBEEK, loc. cit., p. 128.
3 cf. chapter IV, § 4a p. 126.
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§ 9. ATTRACTIVE FORCES BETWEEN COLLOIDAL PARTICLES

a. Long range character of the London-Van Der Waals attraction

In order to understand colloid stability, besides the doublé layer repulsion an
attraction which keeps the coagulum together must be assumed to exist. This attraction
must be of a very general kind because all lyophobic suspensions can be made to coagul-
ate by removing the doublé layer repulsion. The only known attractive forces of suffi-
cient generality are the LONDON dispersion forces. Usually the LoNDON-VAN DER
WAALS forces are supposed to have only a very short range, of the order of atomic
dimensions. In the case of colloidal particles the additivity of dispersion forces, however,
lend them a much longer range (of the order of colloidal dimensions).

KALLMAN and WILLSTATTER 1 were the fitst to draw attention to this fact. The idea
has been taken up by DE BOER 2 and especially by HAMAKER 3 who developed a theory
of the stability of hydrophobic colloids based on the interplay of doublé layer repulsion
and VAN DER WAALS attraction.

It has been suggested by other authors 4 that the introduction of VAN DER WAALS
forces is superfluous because the attraction can already be explained by the properties
of doublé layer interaction alone. As the criticism 5 on this point of view has not been
refuted satisfactorily 6 for the time being the only origin of the attraction is to be found
in the VAN DER WAALS forces.

b. Van Der Waals attraction between two atoms

The attraction between two neutral atoms, already introduced in 1873 by VAN DER
WAALS ' to explain the properties of non-ideal gases and liquids, has been explained by
three different effects. Two of them, the interaction of the dipole moments 8 and the
polarizing 9 action of a dipole in one molecule on the other molecule can be understood
on the lines of classical physics. LONDON 10 however showed that also between apolar
atoms an attraction exists which is a typical quantum mechanical effect, and which, in
all cases except for extremely polar molecules like H2O or NH3, is stronger than the
DEBYE and the KEESOM effect.

The LONDON force may be visualized by the following correspondence picture. In a
neutral atom the zero point energy of the electrons generates a rapidly fluctuating dipole

1 H. KALLMANN and M. WILLSTATTER, Naturwissenschaften, 20 (1932) 952.
2 J. H. DE BOER, Trans. Faraday Soc., 32 (1936) 21.
3 H. C. HAMAKER, Ree. trav. chim., 55 (1936) 1015; 56 (1937) 3, 727.
4 I. LANGMUIR, ƒ. Chem. Phys., 6 (1938) 893; S. LEVINE, Trans. Faraday Soc., 42 B (1946) 102.
5 B. DERJAGUIN, Acta Physicochimica U.R.S.S., 10 (1939) 333; Trans. Faraday Soc., 36 (1940) 203;

B. DERJAGUIN, Acta Physicochimica U.R.S.S., 12 (1940) 181, 314; B. DERJAGUIN and L. D. LANDAU,
Acta Physicochim. U.R.S.S., 14 (1941) 633; E. J. W. VERWEY, Philips Research Repts., l (1945) 33; E.
J. W. VERWEY and J. TH. G. OVEHBEEK, Trans. Faraday Soc., 42 B (1946) 117; Theory of the stability of
lyophobic colloids, Amsterdam 1948.

6 See General Discussion, Trans. Faraday Soc., 42 B (1946) 123 et seq.
7 J. D.VAN DER WAALS, Thesis, Leyden 1873; Die Kontinuitat des gasformigen and fliissigen Züstande-

I, II, Leipzig 1899.
8 W. H. KEESOM, Proc. Koninkl. Nederland Akad. Wetenschap, 18 (1915) 636; 23 (1920) 939; Phy

sik.Z., 22(1921) 129,643.
» P. DEBYE, Physik. Z., 21 (1920) 178; 22 (1921) 302.
10 F. LONDON, Z. Physik., 63 (1930) 245; See also H. MARGENAU, Revs. Modern Phys., 11(1939) 1.
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moment. The frequency of the fluctuation is of the order of the frequency of electronic
movements, i.e., of the order of 1015 or 1016 per second. The fluctuating dipole of one
atom polarizes the other one and consequently the two atoms attract each other.

The three components of the VAN DER WAALS attraction all give rise to an attrac-
tive energy varying inversely as the sixth power of the distance between the two atoms.

The potential of a dipole at a distance r is equal to
, _ y. cos &

—f-

where & is the angle between the dipole moment and the radius vector. So the field strength F is propor-

tional to -3 and the DEBYE interaction with a molecule whose polarizability is a

V DEBYE = -y a /" ^ (30)

The energy of interaction, s, between two dipoles depends upon the mutual orientation and is
proportional to [if/r3. The KEESOM attraction results from the preponderance of attractive orientations
over repulsive ones due to the BOLTZMANN principle.

T/ __

* KEESOM —

ƒ ..-
over all

orientations

ƒ e-^
over all

orientations

E2

kT

lkT^ds

cT d 4* d *

^kT-r« (31)

Finally the LONDON energy can, according to the above mentioned correspondence principle, be descri-

bed as a sort of DEBYE effect and consequently is also proportional to -g. Various authors have developed

approximate expressions for the proportionality factor of which we cite here without proof LONDON'S
own equation,

T, J a2 h v
V LONDON = — ̂ T~ (32)

in which hv is a characteristic energy corresponding to the chief dispersion frequence v taken from the
dispersion spectrum of the atom.

Alternative approximations have been given by SLATER and KiRKWooo1 and by NEDGEBAUER 2

leading to somewhat different (mostly higher) numerical values.

A fundamental difference between the KEESOM and DEBYE energy on one hand
and the LONDON energy on the other hand appears when the attractive forces between
conglomerations of atoms are considered as will be neccessary for the application to
colloid phenomena. As the electric field strength acting on an atom is the vectorial sum
of the separate field strengths generaled by each of the other atoms, the total energy of
interaction due to the KEESOM and the DEBYE forces is not equal to the sum of the sepa-
rate interaction energies but usually much smaller. The LONDON energy between two
atoms, however, is to the first approximation independent3 of the interaction with
other atoms. So for a large number of atoms the total LONDON energy may be found by a
simple summation which for many cases may even be replaced by an integration (see
next section).

1 J. C. SLATER and J. G. KIRKWOOD. Phys. Kev., 37 (1931) 682.
2 TH. NEUGEBAUER, Z. Physik, 107 (1937) 785.
3 See for instance H. HELLMANN, Einführung in die Quantenchemie, Leipzig und Wien, 1937, p. 189.
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c. Retardation of London-Van Der Waals forces

As the LONDON forces are essentially of electric origin, a certain time is necessary
for their propagation and it can be expected that a more complete treatment, taking
account of relativistic effects, may change the laws of interaction. If indeed the corres-
pondence picture of the previous subsection is followed more closely, it would be

expected that if the time of travel of an elec-
tromagnetic wave from one atom to the other
is of the same order or larger than the time of
revolution of the electrons, or, which amounts
to the same thing, if the distance between two
atoms is comparable with the wave length of
the LONDON frequency (cf. eq. 32), the LONDON
force will be smaller than the value given by
eq. (32).

This qualitative picture has been worked
out by CASIMIR and POLDER 1 who found that
for large distances between the atoms the

LONDON energy decreases as -^r-insteadofas—.
r' r"

Fig. 12 shows how, in an especially simple
case, the LONDON interaction is weakened by
this retardation effect and how this weakening
begins to be important when the distance of
the two atoms is of the order of X which may
be estimated as 1000 A or thereabouts.

The correction function can be quite
accurately represented by simple analytical expressions, namely

3 / /v 2 h ti
•rr ƒ4 '*• r / \ / O O \V = — f (p) (33)

Fig. 12. Correction factor due to retarda-
tion for the contribution of one excited state
to the usual LONDON energy. (1) For the
interaction between a neutral atom and a
metallic wall. r is measured in units \ A
(2) For the interaction between two neutral

atoms. r is measured in units X.

in which p = 2 TT

3<

f (p) = 1.01 —0.14p

,. 2.45 2.04

§ 10. LONDON-VAN DER WAALS ATTRACTION BETWEEN TWO
PARALLEL FLAT PLATES

a. Attraction according to the inverse sixth power law

Consider two infinitely large flat plates, each of thickness S, at a distance 2 d from
each other. The number of atoms per cm3 is g and the LONDON energy between two
atoms at a distance r B

V-, = (34)LONDON r6

1 H. B. G. CASIMIR and D. POLDER, Phys. Rev., 73 (1948) 360; Nature, 158 (1946) 787.
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Then the attractive energy per cm2 of the two plates can be easily calculated. When the
distance d is larger than a few atomic diameters the summation of (34) over all atomic
pairs may be replaced by an integration.

In Fig. 13 an atom (belonging to the left hand plate) is sketched in its interaction
with the other plate. The right hand plate is thought to /s
be built up of infinitesimal small rings of diameter o, cross
section do dx at a distance (R + x) from the atom cons-
idered.

The energy of interaction is found equal to

ƒ = ƒ [- 2 TT o- do- dx-
{(R +

8)»,
(35)

The interaction of a column with cross-section dO and
a length equal to the thickness of the second plate is given by

2d+8

VJdO =
2d

dO (36)
Fig. 13. Illustrating the LON-
DON-VAN DER WAALS forces
between an atom and an in-

finitely large plate of
thickness S.in which, following HAMAKER, A is written for -re2 q- (3.

When the distance between the plates is small compared with their thickness the
energy of attraction per cm'2 simplifies to

T/. _ (371v A — ~~ 'A o jo \-" J

This attraction decays comparatively slowly with increasing distance, a property
explaining the long range character of the LONDON-VAN DER WAALS forces. For very
small distances the attractive energy tends to assume an infinitely large negative value.
But there, of course, the approximation used is not valid. In addition to it not being
permissible to substitute the integration process for the summation over all pairs of
atoms repulsive forces will also come into action due to the BoRN-repulsion between
the electronic clouds. It does not seem worth while to try to correct equation (37) for
these effects as physical surfaces probably always possess a certain surface roughness *
exceeding molecular dimensions, so that a treatment of perfectly flat surfaces at very
small distances apart is senseless.

For the applications of VAN DER WAALS forces to colloid science fortunately the
most interesting distances are much larger than atomic dimensions and therefore these
difficulties form no obstacle.

Cf. J. J. BIKERMAN, Sur/ace chemistry for industrial research, New York 1947.
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In most practical cases the colloidal particles are not separated by a vacuüm, but
are embedded in a medium (e. g., water). The quantity A has then to be replaced by
a more complicated expression, which, however, is independent of form and distance
of the particles and is always positive 1.

In Fig. 14 we consider the interaction between
[T] ('T) [2] (?) portic/es far apart two particles of substance l embedded in substance

2 at two different distances. One partiële is sketched
as a square one, the other as a round one. When

[f] © [2] Ci) particles side by s/de the round particle is brought nearer to the square
_ . . , , . _ ,v. *" . . , . . j one. inevitably an equal volume of liquid isFig. 14. VAN DER WAALS interaction of particles , , , , ', , ;} , .,. . .. - displaced and taken farther away from the square

' " ' ........ particle. In order to evaluate all the energies
involved, it is necessary to consider a "square"

volume of liquid which is not displaced and which is near the round particle or the round volume of
liquid in the first or the second situation. The VAN DER WAALS energy of the whole system remains
unaltered except for the interactions between the twoparticles and the two volumes of liquid sketched
in Fig. 14. The change in VAN DER WAALS energy between the two situations is given by

tA + A _ *) A \ \ \ square " round
(All "22 — z "-lïl \ J - - -- - -

in which AH refers to the interaction of atoms l among each other, Aw to that among atoms 2, and Arl
to the mutual interactions of substance l and substance 2. The volume integral is the same as for two
particles in a vacuüm. The proportionality constant AH + -^22 ~ 2 A12 is always positive when the
usual assumption that A-^ — V AH • Azz may be used, for then

AH + A&-2 AU = AH + A>2 - 2 ]/^A^~A^ = (|/̂ Q- 1/"̂ Ö2

The influence of the medium through which the LONDON forces are transmitted would be taken
into account by dividing A by the dielectric constant of the medium for a suitable frequency. As,
however, we are anyway badly informed on the values of the LONDON interaction of the substances
which are important in colloid chemistry we shall not discuss this correction any further.

To give an idea as to the order of magnitude of A we give the value calculated
according to the method of SLATER-KIRKWOOD 2 for the -<4water-water> which is found
equal to

A ...... =0—6x10-" .w.w.

b. Introduction of the rctardation correction

The retardation correction to the LONDON attraction between flat plates is found
by introducing the retardation correction to the attraction of two atoms (§ 9c, p. 266)
in the considerations of the preceding subsection. In § 9c the retardation correction
has been given in terms of 2TT r/A ( X = LONDON-wavelength). When the distance between
the plates is much larger than X, only that part of the LONDON attraction which varies

as — is feit.
r7

This leads us to an attraction between two plates (infinitely thick) decaying as
l/d3 instead of as 1/rf2 (c/, eq. 37).

The whole corrected attraction function is easily found by the application of eq.
(33) and is represented in Fig. 15 and Table 5.

1 H. C. HAMAKER, Physica, 4 (1937) 1058.
2 J. C. SLATER and J. G. KIRKWOOD, Phys. Rev., 37 (1931) 682.
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TABLE 5

Correction factor to be applied to the LONDON attraction between two flat plates in order to account for
the retardation effect

48 ir d2 X corr. factor

p - 4 7 i d / X corr. factor

0.2
0.5
1.0
2.0
3.0
5.0

10.0
large

0.905
0.770
0.597
0.389
0.282
0.180
0.094
0.98/p

correch'on
factor

5 10

Fig, 15. Retardation correction factor to the LONDON attraction between two flat plates at a distance2d,

In a special case, viz., that of two perfectly conducting plates CASIMIR l derived the
value of the retarded LONDON attraction in a completely independent way and came to
following expression for the attractive force F, valid for large values of d (expressed in
microns)

F = 0.013 -J- dyne/cm2 (38)
d

in good accord with his former work and the above given value for plates of arbitrary
material.

§ 11. LONDON ATTRACTION BETWEEN TWO SPHERES

In principle the calculation of the LONDON attraction between two spheres follows
the same lines as tnat between flat plates, only the integrations to be carried out are
somewhat more intricate.

1 H. B. G. CASIMIR, Proc. Koninkl. Nederland Akad. Wetenschap, 51 (1948) 793.
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The problem has been resolved by HAMAKER 1 for the interaction of two spheres
of arbitrary dimensions at an arbitrary distance.

His result, specialized for the case of two equal spheres of radius a with a distance
R between their centres, is given by

2a? 2 a2 J?3-4

This attraction can be described as a function of the ratio between R and a. The
physical meaning of this is clear. The attractive energy retains the same value when
all the dimensions of the system are multiplied by the same factor. Then all the dis-
tances between corresponding interacting volume elements are multiplied by a factor, ƒ,

the interacting energy is multiplied by — but the volume elements themselves are each

multiplied by /3. The two factors/3 just cancel the — — and the interaction is notmodified
l ./

This property thus is a general feature of the — law, a feature which is closely connec-

ted with the long range character of the LONDON -VAN DER WAALS forces.
n

Calling — = s, eq. (39) can also be written

For small distances between the spheres this attraction decays still slower than
that between flat plates. Indeed, calling the shortest distance between the spheres
R — 2 a = H, and developing (39) for small values of H, we find

,, Aa l
".« = - -J2 Jj

whereas of course for large distances between the spheres Valt decays as -— .

The eq. (39) and (40) are valid only if the retardation is neglected. If we want to
introducé the . retardation correction this can be done in the same way as for the flat
plates. The integrations are rather tedious though in principle not difficult. The results
are given in Fig. 1 6 which represents the ratio between the LONDON force with retarda-
tion and that following the reciprocal sixth power law. As the retardation depends
explicitly on the length X, it is now impossible to express the results as a simple function

D

of -• — . In Fig. 16 we have therefore chosen as abscissa the separationbetween the two

spheres H = R — 2a expressed as a multiple of - — . The different curves are valid for
2 r.

spheres of different magnitude, the smallest giving the same correction function as that
between single atoms, the largest resembling more and more the case of flat plates.

H. C. HAMAKER, Physica, 4 (1937) 1058.
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correcfion
factor

5 IQ — distance
X

Fig. 16. Retardation correction factor to the LONDON attraction between two equal spherical particles.

The radii of the particles are resp. 0.6, 3 and 30 times ^— where X is the LoNDON-wavelength. The

abscissa is the shortest distance between the two spheres again expressed in multiples of -—.

§ 12. THE TOTAL INTERACTION BETWEEN COLLOIDAL PARTICLES;
COMBINATION OF LONDON ATTRACTION AND DOUBLÉ LAYER

REPULSION

a. General properties of curves of total interaction

The total energetic interaction between colloidal particles is found by addition of
the repulsion and the attraction curves. The general character of this curve of total
interaction can be easily deduced from the properties of the repulsion and the attraction.
The repulsion has the features of an exponential function with a range of the order of
the thickness of the doublé layer. It remains finite for all values of the distance between
the particles. The attraction however decreases as some inverse power of the distance.
For very small distances it goes to very large negative values. Consequently the attract-
ion will predominate at very small and at very large distances. At intermediate distances
the repulsion may predominate but whether this is really the case will depend upon the
actual numerical values of attraction and repulsion. In principle there are two different
types of curves of total interaction, viz., one with a maximum at intermediate distances
and a minimum at larger distances and the other showing a monotonie decrease of the
energy with decreasing distance. See Fig. 17. The separation between the particles at
which these maxima and minima occur will be of the order of magnitude of the thick-
ness of the electrical doublé layer, as this is the range of the repulsion.

In Fig. 18 one attraction curve is combined with a number of repulsion curves of
different range, which shows very clearly the displacement of the maximum to larger

distances with decreasing concentration of electrolytes (increasing —).
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In most actual cases it will
not be necessary to take account
of the retardation effects in the
LONDON forces (for possible ex-
ceptions cf. chapter VIII, § l la,
p. 337) as this only manifests
itself for distances larger than
1000 A whereas in colloidal

systems — is usually smaller
%

(often much smaller) than this

b. Interaction between f lat
etween two plates

The interaction of flat
plates is important in two ways
forourunderstandingofcolloid-
chemical phenomena. In the
first place it can be applied im-
rnediately to systems containing
flat particles like vanadium
pentoxide, bentonite and the
like. But also in the case of more
symmetrically formed crystal-

line particles we may expect that the description of flat plates will give us information
on the behaviour of the system. Indeed the interaction of, say, cubical particles which
approach each other with sides of the cubes facing each other, will be well described

Fig. 17, Combination of one attraction curve with
two repulsion curves of different height.

10 20 30 W 50
dïhalfofdittance bftwrrn ihr platn

Fig. 18. Illustrating the influence of the concentration of electrolyte
(expressed through x: c/, inserted table) on the potential energy curve.
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as flat plates when the distance between the cubes is small compared with their linear
dimensions.

Moreover it will be shown in chapter VIII that the general properties of lyophobic
stability can be derived from the interaction of flat plates.

Agreat number of variables influence the interaction of flat plates. The concentra-
tion and the valency of the electrolytes are important but so, too, are the potential of
the surface and the value of the LONDON constant. In § 3b we have already seen that
many possible interaction curves can be easily transformed into each other by a suitable
choice of the units of energy and distance.

For a given value of Z (j-=r times the potential of the surface) the energy of repul-
sion is given by

In the same way the energy of attraction, which is proportional to rf-2, can.be given as

VA = \z**A%(*d)
z

Hence a c ertain curve of total interaction giving the energy as a function of the distance
is also valid for another set of values of x and z if the unit of energy is changed in the

ratio — / — \, the value of A in the ratio z-f Xt/z»2 x2 and the unit of the length in the ratio
z? l z?

Xi/x2. A set of typical interaction curves is given in the Figs. 19-23 in which the
units of length and energy and the value of A to match it are mentioned in the insets.

In Fig. 19 even for the highest values of the potential of the surface the attraction
prevails for all distances. Fig. 20 which as compared to Fig. 19 has lower values of the

•- d=half of distance between the plates
30 40 50

Fig. 19. Curves giving the total potential energy per cm2 against the separation of the plates.
Potential of the plates <\ia — Z X 25.6 mV. The electrolyte is supposed to be univalent. For other

units c/, the conversion tables inserted in the figure.
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LONDON constant A, shows clearly the transition of curves with a maximum for high
values of the potential to curves without a maximum for values of Z equal to 4 or lower.
Each of the following ngures has been constructed for lower values of the LONDON
constant, leading to a continually greater preponderance of the repulsion,

When we realize that stable colloids can only be expected when the potential
energy curve shows a maximum and that for univalent electrolytes the flocculation value

30 40 50 •

d = half of distance beiveen the plates

Fig. 20. Curves giving the total potential energy per cm2 against the separation of the plates.
Potential of the plates 4*„ = Zx 25.6 mV. The electrolyte is supposed to be univalent. For other units

cf. the conversion tables inserted in the figure.

d'^half of distance between the plates

0.5-

Fig. 21. Curves giving the total potential energy per cm2 against the separation of the plates.
Potential of the plates '1^= ZY+ 25.6 mV. The electrolyte is supposed to be univalent. For other units

cf. the conversion tables inserted in the figure.
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is usually found to be of the order of 100 m mol/1 (x = 10') we see from the Figs. 19-23
that stability for this concentration of electrolytes and not too high potentials, demands
a value of A in the neighbourhood of 10~12 which is in quite good accordance with
the theoretical evaluation of A mentioned in § lOa.

A more detailed discussion on colloid stability, in which we shall also make use
of the STERN correction, will be given in chapter VIII because a good understanding

30 40 50
-\dahalf of distance between the plates

Fig. 22. Curves giving the total potential energy per cm2 against the separation of the plates.
Potential of the plates fy.. =• Z X 25.6 mV. The electrolyte is supposed to be univalent. For other units

cf, the conversion tables inserted in the figure.

unit of
_absi;jssg_
unit of
ordinate
value of A

cm* 10''

erg /cm •

2x10'"

rgx10~'/c

cmx10'

ergx

2x10'"

generolly

cmx10~

ergxx x10~'/t'cm*

30 , 40 50
d* half of distance between the'p/ates

Fig. 23. Curves giving the total potential energy per cm2 against the separation of the plates.
Potential of the plates '^0 = Z x 25.6 mV. The electrolyte is supposed to be univalent. For other units

cf. the conversion tables inserted in the figure.
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Potential energy
of interaction

15-10

of stability can only be given after the treatment of the kinetics of flocculation (chapter
VII).

c, Interaction of spherical particles

In the same way as for flat plates the repulsion and attraction curves can be com-
bined for spherical particles to give curves of total interaction.

In this case we express the energy as energy per pair of particles and can immedia-
tely compare this energy with the energy of BROWNian motion. It is thus to be expected

that stability will be found when the
maximum of energy is large when com-
pared to kT whereas a maximum of kT
or lower will be easily overcome by
BROWNian motion, leading to floccula-
tion.

Just to give a few examples of in-
teraction curves we reproduce Figs. 24
and 25 showing, for particles of 10~6 cm
radius, how the interaction curves change
withx. (concentration of electrolytes) and
<l>0 the surface potential. As abscissa we

D

have chosen the value s = - defined
already in § 11.

d. The Born repulsion

It has been mentioned in § lOa that
for very small distances the BORN repul-
sion between the electronic clouds comes
into action.Owing to its very steep descent
this is a typical short range force even for
colloidal systems. lts presence is impor-
tant in preventing the energy from
becoming infinitely large and in helping
to explain peptization phenomena (chap-
ter VIII, § 9, p. 333).

lts value in colloidal systems is very
difficult to estimate, because as a short
range force the value is much more
sensitive to structural details in the sur-

face than are the long range doublé layer repulsion and VAN DER WAALS attraction.
HAMAKER 1 has given schematical potential curves of colloids in which the BORN

repulsion is included.

e. Interaction of more than two particles

In stable lyophobic systems and in the first stages of coagulation it is sufficient to
consider only encounters between two particles, as multiple encounters are too rare

-10kT
-05-KT'-*

-ZOkT

Fig. 24. Showing the influence of the concentration
of electrolyte (x) on the total potential energy of
interaction of two spherical particles

a = 10~5 cm; /1 = 10~12 ergs; 4*0 = — — ''

1 H. C. HAMAKER, Ree. trav. Mm., 56 (1937) 3.
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to have any appreciable influence. In the further course of coagulation when larger
agglomerates have been formed, interaction of more than two particles becomes
important.

Perhaps still more important is
the interaction of many particles in the
phase separation found in systems
with elongated or flattened particles. /muttipies]
(See chapter VIII, § 7, p. 326) \ l °fkT r

Potential
energy

of
interaction

Unfortunately theoretical deve-
lopment in this direction is practi-
cally absent. LEVINE 2 considered the
correction on the interactions for the
change in the electrolyte content of the
surrounding medium due to desorp-
tion. This may be an important effect
in concentrated colloidal systems, but
the idea has not yet been fully deve-
loped so that even the sign of the
effect is uncertain.

ONSAGER 3 treated the problem of
phase separation from a completely
different point of view and succeeded
in showing that phase separation may
be due partly to entropy effects. Also
in his calculaüon, however, all inter-
actions are described as interactions
by pairs which enables him to find the
analogue of the second virial for col-
loidal systems and this is in principle
enough to describe phase separation.

(ergs) 1x10'

-1x10

Fig. 25. Showing the influence of the surface potential
(<^0) on the total potential energy of interaction of two
spherical particles

a — IQ-5 cm; A = 10-1S ergs; x = 106 cm-1.

1 S. LEVINE, Trans. Faraday Soc., 42 B (1946) 102.
2 See S. LEVINE, J. TH. G. OVERBEEK, Discussion remarks Trans. Faraday Soc., 42 B (1946) 128;

S. LEVINE, Trans. Faraday Soc., 44 (1948) 833.
3 L. ONSAGER, Ann. N.Y. Acad. Sci., 51 (1949) 627; Phys. Rev., 62 (1942) 558.


