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I. Introduction

When an electric field is applied to a colloidal solution, in many cases,
the colloidal particles are observed to migrate to one of the electrodes.
This phenomenon, described in 1861 by Quincke (56), is termed cataphoresis
or, better and more generally, electrophoresis.

In the development of colloid science, electrophoretic experiments
have played a very great part indeed. There probably is not a single other
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method, of investigation that has been so widely applied in pure as well as
in applied research of colloids. This may be explained by the fact that a
number of techniques for the determination of the electrophoretic mobility
are available, which ask only for a comparatively simple experimental setup.
Another factor in favor of electrophoresis certainly has been the attractive
and simple interpretation of Helmholtz (33) and Smoluchowski (61,62),
permitting calculation of the zeta potential from the electrophoretic mobil-
ity.

The classical investigations of Hardy (32), Powis (55), and Burton (15)
introduced the concept that the stability of hydrophobic colloids is closely
related, to the zeta potential as calculated from electrophoresis. A speci-
fied minimal zeta potential (the critical potential) was found to be neces-
sary to keep the hydrophobic suspension stable. This concept has been
very widely used, and, although in more recent concepts of the stability of
colloids (71,73,74) the zeta potential has a less predominant position,
electrophoresis still remains an important source of information about hy-
drophobic colloids.

With hydrophilic colloids the relation between stability and electro-
phoresis is much less prominent because many hydrophilic colloids may
remain in colloidal solution even when their electrophoretic mobility is re-
duced to zero. Nevertheless, in this domain also electrophoresis retains its
significance for the determination of the isoelectric point and of the charge
of the particles outside the isoelectric point. In mixtures of hydrophilic
colloids, again, stability is related to electrophoresis. Complex coacerva-
tion—that is, a phase separation in which a mixture of hydrophilic colloids
is precipitated in the form of a very concentrated liquid—occurs only if the
two colloids are oppositely charged and if the charge of each is sufficiently
high (14). This charge can be, and is actually in most cases, evaluated
from electrophoresis.

Although the usual methods of determining electrophoretic mobility
of hydrophobic colloids are not directly applicable to hydrophilic systems,
because the scattering of light by the latter is much slighter than that of hy-
drophobic colloids, the technique of measuring electrophoresis of hydro-
philic colloids adsorbed on small inert particles as coal, quartz, oil droplets,
etc. (2) is widely applicable and easy to manage.

Moreover, the method of Tiselius (65,66), which uses the difference
in optical density between a colloidal solution and its dialyzate, and thereby
adapts the moving boundary technique to hydrophilic colloids, enjoys a
continually increasing interest especially in the field of proteins. It has
been very frequently used for the determination of purity of protein prepa-

ELECTROPHORETIC VELOCITY OF COLLOIDS 99

rations, and for the quantitative analysis and separation of protein mix-
tures. In the application of this method, however, the interpretation of
the electrophoretic mobility in terms of the charge or potential of the
particles has somewhat fallen into the background. Not so much because
the evaluation of the electrophoretic mobility would be difficult in this
method (it may be so in dilute solutions), but perhaps because in many
applications of the Tiselius technique (quantitative separations, proof of
purity), the relation between electrophoretic mobility and charge of the
particles is inessential.

In every textbook on colloid science and in many boobs on general
physical chemistry, electrophoresis is treated. Moreover, two excellent
monographs of Abramson on the subject exist. The first of these (1), how-
ever, dates back to 1934; the second (4), published in 1942, deals especially
with proteins.

In the following pages we shall direct our attention particularly to the
quantitative interpretation of the electrophoretic mobility. Such a survey
seems not to be wholly superfluous as, cven in recent times, there exist
many controversial opinions on the subject and, although by far not all
the problems presented here have been completely solved, the situation
seems to be cleared sufficiently to justify a review of this type.

II. Classical Concepts of Electrophoretic Velocity

In 1879 Helmholtz (33) presented a theory of electrokinetic phenomena,
one of which is electrophoresis, and made clear that the electrophoretic
velocity is proportional to the zeta potential and not, as one might imagine
upon first thought, to the charge of the colloidal particle.

1. Equation of Helmholts-Smoluchowski

The derivation of Helmholtz has been improved and extended by
Smoluchowski without, however, essentially altering the final result.
Smoluchowski's analysis was in the first instance directed upon electro-
osmosis and he derived his electrophoresis equation by simply remarking
that electrophoresis is the reverse phenomenon from electro-osmosis, so
that, for the relative motion of liquid and solid the same equation applies
to both phenomena. As we are concerned here especially with electro-
phoresis, we will give Smoluchowski's derivation in an abridged form and in
direct application to electrophoresis.

In a solution of electrolyte, a suspended particle assumes as a rule a
certain charge, a compensating charge of the opposite sign and equal mag-
nitude staying in the solution in the neighborhood of the charged particle.
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The extension of this compensating charge in the solution is of the same
order as the thickness, I/K, of the Debye-Huckel ionic atmosphere :

1 / tkT

in which t isj&e dielectric constant, e the elementary charge, zt the valency,
nt the number of ions of species i per cubic centimeter, k Boltzmann's con_
stant, and T the absolute temperature.

By application of Poîsson's equation :

(2)

in which A is the operator of Laplace, ^ the potential, and p the charge
density Jn the double layer and Boltzmann's theorem, the distribution of
charge and potential around the particle, can be derived, but since in
Smoluchowski's derivation, an explicit expression for the distribution of
charge is superfluous, we will postpone this point until Section 3.

With Smoluchowski we assumed a rigid particle of arbitrary form em-
bedded in a solution. The surface of the particle has a potential f with
respect to the liquid far from the particle. If one wishes to assume that a
layer of liquid adheres so firmly to the particle that it cannot be set into
motion either by an applied electric field, or by a motion of the liquid, this
layer shall be considered as forming part of the particle, the potential J"
being found now at the boundary of the fixed and the free liquid.

The existence of such a fixed layer of liquid was postulated by Smoluchowsti (61)
in order to explain the difference between the total potential in the double layer (e-
potential) obeying the equation of Nernst, and the ? potential. The difference between
these two potentials is located in the adhering liquid layer and perhaps in the solid phase
too.

Lamb (41), contrary to Helmholtz and Smoluchowski, assumed the possibility of a
slip between solid and liquid in the electrokinetic movements. The experimental argu-
ments for such a slip are, however, far from convincing and, as far as our knowledge of
the boundary phenomena goes at present, slip does not seem to occur.

Bikerman (7) recently discussed the theory of the adhering liquid layer and tried to
explain the difference between t and f potentials by the surface roughness of solids.
A layer of liquid, without being in the true sense fixed to the solid, would be kept from
moving with the bulk of the liquid by the protruding parts of the surface. It should be
kept in mind, however, that in Smoluchowski's analysis the form of the particles is im-
material. Roughness of the surface could only influence the eleotrokinetic phenomena
if the roughness is on a scale smaller than the thickness of the double layer, thereby in-
validing Smoluchowski's next assumption on the dimensions of the particle.

The dimensions of the particle are so large that the radius of curvature
at any point of the surface is large compared to the extension of the double
layer.
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The particle is considered to be nonconducting, whereas the electric con-
ductance of the liquid, its dielectric constant, and viscosity are assumed to
have the same value in the double layer as in the bulk of the liquid.

All three assumptions are debatable. The electric conductance in the surface
layer may be higher than the bulk conductance (see Sect. III.2).

The viscosity might well be influenced by the presence of the solid surface. This ef-
fect, however, is at least formally accounted for by the assumption of the adhering water
layer (in which the viscosity would be infinitely high).

The dielectric constant in the double layer might be changed by a loss of mobility
of the liquid molecules adsorbed to the surface and by a change in composition of the
liquid near the surface. As long as there is no direct experimental evidence of this
change in dielectric constant, which there is not at present, it seems not useful to intro-
duce a change in dielectric constant as an extra complication in the theory.

The electric field applied to produce electrophoresis may be distorted by
the presence of the particle but is otherwise additively superimposed upon
the field of the double layer.

As the radius of curvature of the particle surface is large, the potential
gradient of the double layer is to a good approximation perpendicular to
the surface. The applied electric field has only a component parallel to
the surface, because the particle is nonconducting. If we call this field
strength E, it is easy to demonstrate that just outside the double layer the
velocity of the liquid with respect to the particle is directed along E (paral-
lel to the surface) and has the value:

v = -
47TÎ?

(3)

where ij is the viscosity of the liquid.

The derivation of equation (3) can be given along the following lines. The charge
density, p, in the double layer is given by Poisson's equation (2), which may be written :

p — ~

in which n is the outward normal on the surface. A volume element of the liquid is
subjected to two equal forces of opposite directions, one due to the applied electric field
working on the charge in the double layer, the other due to viscous friction.

As in the neighborhood of the surface, the motion of the liquid is parallel to the
surface, the force exerted by viscous friction on a thin layer of liquid, an, is equal to the
difference in the forces transmitted on both sides of the thin layer, that is equal to:

/ dv\ I dv\
l i j ~ ~ J ~ " \ i j ~ J

The force exerted by the external field on the net charge present in this layer is
given by pEdn. Equalizing the two forces we get the equation;
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Integrating once we find:

dn* dn*

ad/*
an

dv

an

d = 0 because f or n -*- <°, (d-^/dn) — (dv/dn} — O

The second integration gives:

With f co = 0 and v0 = 0, this is equivalent to equation (3)

Under the influence of the applied electric field, the particle moves with
a certain constant speed, u, in the direction of the field. With respect to a
system of coordinates fixed to the particle, the liquid at a great distance
from the particle moves with velocity ~u. In the immediate neighbor-
hood of the particle, the velocity of the liquid is given by equation (3),
and in intermediate regions the velocity has to satisfy the condition of
incompressibility, viz. :

div v = 0 (4)

The solution of equation (4) and therewith the value of u is easily found by
remarking that the applied electric field obeys an equation analogous to
equation (4) :

div E = 0 (5)

and that the boundary conditions at the surface of the particle for v and E
are proportional to each other according to equation (3). Consequently
the velocity of the liquid is everywhere parallel and proportional to the
electric field E and especially at a large distance from the particle:

,-f
E

where E is the value of the applied field at some point far from the particle.
Returning to a resting system of coordinates, the electrophoretic velocity
M of the particle with respect to this system is given by:

: (6)

completely independent of the form and dimensions of the particle, if
large enough.
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With regard to the uncertainty in the value of t (see above), there have been pro-
posals by Bull and Gortner (12) and Guggenheim (31), among others, to characterize the
electrokinetic phenomena by the product of e and f — being the electric moment of the
double layer. Guggenheim even made a formal proposal to introduce the quantity
ef/12jr and to call the unit of this quantity the Helmholtz. Although these proposals
have a certain advantage in that they allow the double layer to be characterized un-
hampered by uncertainties in the dielectric constant, it should not be forgotten that we
turn to electrokinetic experiments for information on the potential or the charge of the
surface. To that end we must make some assumption (more or less well founded)
on the value of e in the double layer.

2. Hückel Equation

In Smoluchowski's theory, the motion of the particle is governed by
three different types of forces, although they have not been explicitly intro-
duced into the calculation. The equation :

-47T dn —dn

occurring in the derivation of Smoluchowski's equation, when applied to
n = 0, is equivalent to :

(u*\- o-E = i) [-r- )\dn/n=i

in which a is the charge density on the surface. This means that the elec-
trical force on the surface charge is just counterbalanced by a viscous fric-
tion. This viscous friction can be regarded as consisting of two compo-
nents.

(1) The viscous friction that would also be present if the liquid surround-
ing the particle would contain no charges.

(2) The force that would be exerted on the particle by that com-
ponent of the motion of the liquid which is caused exclusively by the ac-
tion of the applied filed on the charges in the liquid part of the double layer.
This force is called the "electrophoretic retardation." It is always retard-
ing because the charge in the liquid is the opposite of that on the particle.
These same forces are treated in the theory of conductance of strong elec-
trolytes (20,50); Debye and Hückel (21) also applied to colloidal par-
ticles the method of calculation used in the theory of strong electrolytes.
They confirmed Smoluchowski's equation (6) except for the factor 1/47T,
which should only have this value for a cylindrical particle migrating with
its axis parallel to the field, whereas for other forms the factor should have
another value. For a spherical particle Hückel (36) derived a factor I/OTT.

Since Debye and Hückel stated that they used the same assumptions
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of Smoluchowski, but did not show where the analysis of the latter was in
error, there was a contradiction (remaining unsolved for several years)
until Henry (34), in a renewed analysis of the whole problem, reconciled
the two contradictory points of view.

3. Henry Solution of the Contradiction between Smoluchowski
und Hückel Theories

The difference between the concepts of Smoluchowski and Debye and
Hückel is to be found in the geometry of the applied electric field. Whereas
Smoluchowski considers the particle as an insulator and takes the de-
formation of the applied field by the particle explicitly into account, Debye
and Huckel simply assume that the value and the direction of the electric
field have the same value throughout the whole system. The concep-
tion of Debye and Hückel is quite justified in the case of electrolytic solu-
tions, because there the extension of the double layer is so much larger
than the dimensions of the ions that the deformation of the field, which is
only felt in the immediate neighborhood of the ions, is practically without
influence upon the electrophoretic retardation.

In colloidal systems, however, which of the two concepts must be ap-
plied depends wholly upon the ratio of the extension of the double layer
and the dimensions of the particles. If the particle is relatively large, the
deformation of the lines of force has to be taken into account, which results
in a smaller value of the electrophoretic retarding force. Hence Smolu-
chowski's value for the electrophoresis is larger than Hückel's.

Henry (34) worked out an electrophoresis equation for any ratio be-
tween the thickness of the double layer and the dimensions of the particle.

It is impossible to solve this problem with the same generality used by
Smoluchowski ; it is necessary to restrict the analysis to certain specified
forms of the particle. Henry's calculations are restricted to spherical
particles and cylinders with their axis parallel to, or perpendicular to, the
direction of the applied field.

For the motion of the liquid Henry uses the same assumption as Smolu-
chowski and Debye and Hückel, viz., the equations of Navier and Stokes,
with a constant viscosity, incompressibility of the liquid, and a relative
velocity zero at the spherical (or cylindrical) surface, where the potential of
the double layer has the value f. Henry, too, assumes that the outwardly
applied field, although deformed by the presence of the particle, and the
field of the double layer are simply additive.

Without any further approximation he thus derives the following
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equation (7) for the electrophoretic mobility of a spherical isolating par-
ticle of radius a.

(7)

In order to work out the integrals in expression (7) it is necessary to
introduce explicitly the dependence of potential ̂  on distance r, measured
from the center of the sphere. So apart from Poisson's equation (2), which
has been used in the derivation of (7), it is necessary to introduce Boltz-
mann's theorem to establish a relation between the charge density, p, and
the potential, #:

p = n+z+e exp (~z+ — «_ z- e exp (+ z- &js/kT) (8)

where n+ and n- are the concentrations, z+ and z- the valencies of the
positive and negative ions present in the solution. It is well known that an
explicit solution of the combination of equations (2) and (8) can be found
only when the exponents in (8) are so low that the exponentials may be
developed and only the first term of the development is used, leading to :

P — — rf (»+

When this approximation is used :

+ «- s-

= fa

(9)

(10)

Inserting equation (10) into (7), relation (11) is found for the velocity of a
spherical isolating particle :

OTTTJ D + w OK3a3

l£~ 96 + 96

in which KÖ gives the ratio between the extension of the double layer
((I/K), see Eq, 1) and the radius of the sphere, a.

In Figure 1 the equation of Henry is represented graphically. It will
be clear that the deformation of the applied field is strongly dependent
upon the electric conductance of 'the particle. Henry showed that this
deformation and its influence upon the electrophoretic velocity is deter-
mined by the ratio p of the electrical conductivities of the particle and the
surrounding liquid. His results for three typical cases, p = O, M = 1, and
ft = », are given in Figure 1.
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For cylindrical particles with their axis parallel to the field, the electro-
phoretic velocity is given by Smoluchowski's equation (proportionality
factor l/4ir), independent of the thickness of the double layer or the con-
ductivity of the particles.

For cylinders placed transverse to the field, Henry has given an electro-
phoresis equation analogous to equation (7), but he has only worked out

0.5

Ĉylinder II field

Sphere,

Cylinder J.

Sphere,

Sphere, p. = oo

0.01 0.1 I 10 100 1000

Ka (logarithmic scale)

Fig. 1. Factor of proportionality between electrophoretic velocity
« and zeta potential according to the theory of Henry (34).

the solution for the extreme cases that KÖ = 0 or KÖ = « (b is the radius of
the cylinder), finding for insulating particles a proportionality factor I ƒ Sir
when the double layer is very extended and 1/47T for a very thin double
layer. When the cylinder is conducting the electrophoretic velocity in the
case of a very thin double layer is zero, just as in the case of a conducting
sphere.

Gorin (26) extended Henry's calculations on cylinders and determined
the proportionality factor for intermediate values of Kb. His results are
reproduced in Table I and Figure 1.

In applications to cylindrical particles, cylinders oriented randomly are
often involved. Gorin (4, p. 127) determined an average mobility factor
for random orientation by applying the relation :
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Urandom

= _ _ _
j_ U\\ (12)

The reasons given for averaging the reciprocal values of the mobility
rather than the mobility itself are not very convincing. Gorin defends
this procedure by mentioning that, Jn the averaging, stress should be placed
upon the distortion of the external field rather than on the mobility.

TABLE I

Electrophoretic Mobility of Infinitely Long Cylindrical Particles (26)

Cylinder J_ to field Cylinder in random orientation

0 .
0.4.
1.0.

.0.50 0.60

.0.518 0.616

.0.544 0.639
1.4...
2.0. . .
2.4..
3.0...

.0.582 0.676

.0.615 0.705

.0.631 0.719

.0.656 ' -. 0.741
1 1

For particle forms other than cylinders, spheres, and fiat plates no cal-
culations have been made. Neither does there exist a theory of the elec-
trophoresis of a randomly kinked long-chain molecule—of which colloids
like gum arabic, pectic acid, and polyacrylic acid are interesting examples.

4. Influence of Conductivity of Particles

In experiments on the electrophoretic displacement of a cylindrical
silver wire in a solution of silver nitrate where polarization had been care-
fully excluded, Henry (34) could confirm the fact predicted by the theory
that the electrophoretic velocity is zero for conducting cylinders, which
are large in comparison to the thickness of the double layer.

It remains questionable, however, whether for true colloidal suspen-
sions the case M = o> is ever realized even for metallic particles, because the
passing of an electric current through the particles necessarily entails a
polarization of the surface, which may easily be large enough to stop com-
pletely any further current through the particle. Consequently the particle
behaves as an insulator and the electrophoretic velocity should be calcu-
lated putting p, = 0.

Mercury droplets, which certainly are large compared to the extensions
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of the double layer, nevertheless show a normal electrophoretic mobility
(13), which proves, as has already been remarked by Verwey (69), that they
behave as insulators.

5. Electrophoresis of Liquid Droplets

Up to this point the considerations have been restricted to rigid par-
ticles. If this condition is dropped and one turns to the electrophoresis of
the droplets of an emulsion, the state of the theory is rather disappointing.
The friction experienced by a liquid droplet is certainly less than that of a

SURFACE TENSION
increased decreased

Direction of motion of the particle

Fig. 2. Schematic representation of the motions iu
a drop of mercury placed in an electric field (23).

solid sphere of the same dimensions, because the drop of liquid can more or
less adapt itself to the movements of the surrounding medium (10,60).
On the other hand, the double layer at the interface of two liquids extends
in both phases (70,72), and the part of it present in the droplet would be
expected to play an active role in electrophoresis, giving rise to a circulating
motion in the drop. The case has not, however, been analyzed theoreti-
cally.

A recent investigation of Frumkin (23) on the electrophoresis of mer-
cury drops should be mentioned here too, Frurnkin shows that in this
case the mercury droplet is completely polarized by the applied field, so
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that actually it behaves like an insulator. The polarization, however,
alters the surface tension on the poles of the particle thereby generating
motions of the mercury along the interface. If the mercury is positively
charged (as is normally the case), the surface at the pole facing the positive
electrode is negatively polarized, whereby its surface tension increases,
whereas at the other pole it decreases. The motion of mercury generated
by this difference in surface tension is schematically represented in Figure
2. It can be seen that this motion would support the motion of the particle
to the negative electrode thus enhancing the electrophoretic velocity.

Frumkin has shown by experiments and theoretically that, especially
when the surrounding medium is very viscous, the electrophoretic velocity
may be increased enormously above the value calculated from Smoluchow-
ski's equation by a factor of the order of 10* or 105, so that in this special
case the velocity is practically given by the simple equation of Stokes,
where Q is the charge of the drop :v

u =

III. Influence of Deformation of double Layer upon
Electrophoresis

1. Relaxation Effect

In the considerations of the two foregoing sections, an essential sup-
position was that the electric field due to the double layer and the externally
applied field may be simply superimposed on each other. This is certainly
not exactly the case, as the particle and the outer part of the double layer,
having opposite signs of charge, move in opposite directions, by which
means the original symmetry of the double layer is disturbed. By electric
conduction and diffusion, the double layer tends to restore its symmetry but
this restoration takes a certain time, the time of relaxation, and the outer
part of the double layer lags somewhat behind the particle. This gives
rise to an additional electric field, which is directed oppositely to the ap-
plied field, and retards the electrophoretic motion.

In the conductance of strong electrolytes, the influence of this relaxa-
tion effect is of the same order of magnitude as the retardation caused by
the motion of the ions of the atmosphere, electrophoretic retardation (20,50).
Hence, in order to arrive at a complete description of electrophoresis, it
seems necessary to include this relaxation effect.

Several investigators have approached this problem. The first was
Paine (54), who applied the equation of Debye and Hückel directly to
colloidal particles. However, as in the theory of electrolytic conductance
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no account is taken of the deformation of the applied field (see above), this
theory is valid only for small values of KO, (no- < 1/10). It can be seen from
Figure 3 that the field of interest of colloid science, wz.t particles of dimen-
sions between 10 A. and 1 u, and values of K between 105 and 1075 (concen-
trations of electrolyte in water from 10"5 to 1 N] only coincides for a very
small area with the region in which m < 1/10.

10

10

10"

,10

10

10"

KO > 100
Smoluchowski

~\

I FIELD OF INTERES
I TO

COLLOID SCIENCE

Poine,
Oebye and Huckel

10" io6 to6 io7 io8

IO"7/V I0"5/l/ • iO'3* 10"'N IO/V
CONCENTRATION OF A 1-1 ELECTROLYTE

Fig. 3. Field of interest to colloid science compared to fields in
which KO, is larger than 100 or is smaller than 0.1 (51, 53, 54).

On the other hand, it is possible to show that for large values of K&
(KO, > 100), where a is one of the main dimensions of a particle of arbitrary
form, the correction due to the relaxation effect is less than a few per cent.
(In this region Henry's correction, too, is of the order of 3% or less.)

We repeat here the proof of this theorem given by Overbeek (51) in an
abridged and somewhat simplified form.

The relaxation effect can be described as an extra field F (opposing the applied field
E), which is generated by the transport of charge along the particle. This transport of
charge is effected by the applied field and by the electrophoretic motion itself, and Jt is
counteracted by diffusion and conduction. When the double layer is thin, diffusion
plays only a secondary role, so that in the stationary state of electrophoresis the con-
duction should just balance the two first-named effects.

The primary transport of charge by the applied field is proportional to the circum-
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fereiice of the particle, the field strength E, and the charge density of the surface, which
itself is proportional to «?. Consequently this transport can be expressed as a current
il.

The transport of charge by the electrophoresis itself is likewise proportional to the
circumference of the particle, the charge density of the surface, and the velocity u of the
particle, which itself is proportional to E. Therefore the second current is:

The conduction current balancing these two currents ii and in is not restricted to
the surface of the particle but passes in the surrounding medium through a cross sec-
tion of the order of a2 and is proportional to:

im "-' Fna2

where n is the number of ions per cubic centimeter. As K* ~ n:

Consequently, by putting «m = ii + in we find:

FKZ az -

F/E ~ ? /«o

To take the relaxation effect into account, we must replace E in the equation of
Smoluchowski by E — F and we find :

(13)

which immediately shows that the correction for relaxation goes to zero when m becomes
large enough. By a somewhat more accurate reasoning than the one given above, it is
possible to obtain an idea about the magnitude of the constant in equation (13), which is
of the order of e/kT. This means that the correction amounts to about 1% when m -=
100 and J" = 25 mv.

The fact that for relatively large particles Smoluchowski's (or Henry's)
equation retains its validity, even if account is taken of the relaxation cor-
rection, explains a very interesting series of observations summarized by
Abramson (1). It was observed that the electrophoretic mobility of micro-
scopic particles of widely divergent shapes and dimensions is exactly the
same when the surface of the particles may be considered to be identical.
In many cases the identity of the surfaces has been attained by covering
the particles, which may have very different chemical properties (oil,
graphite, iron oxide, quartz, asbestos, etc.) by a layer of protein. In the
circumstances of these experiments, the thickness of the double layer
(which varied between ~ 0.1 M (distilled water) and 0.001 M (solutions)
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was always small compared to the dimensions of the particles (which var-
ied between 0.5 and several hundred microns). So it is in complete accord
with the theoretical developments given above that all show the same elec-
trophoretic mobility, which, incidentally, is the same as the electro-osmotic
mobility. This, however, does not imply that the relaxation effect may
also be neglected for smaller particles. It can be seen in Figure 3 that there
still exists a large region of interest to colloid science (between *a = 1/10
and KO. = 100) in which the influence of the relaxation effect may be ex-
pected to be more important.

In. the existing literature there are relatively few papers on the relaxa-
tion effect of colloids. Only three deal with the case of large KÛ. Of these,
Mooney (48) and Bikerman (8,9) come to equations analogous to our
equation (13), Mooney, however, without stating clearly how his equation
has been derived and Bikerman only for a very special case, viz., a long,
but not infinitely long, cylinder parallel to the field. The third author,
Hermans (35) treats the case of a spherical particle and arrives at a much
larger relaxation effect than that given by equation (13). It seems that
his derivations contain an omission, namely, the relative influence of the
relaxation effect and the electrophoretic retardations, which makes his
results of too large an order of magnitude (see also (52)). The work of Paine
(54) for the case of very small values of KO, has already been mentioned.

Komagata (39) calculated the influence of the relaxation effect includ-
ing any values of KÖ. Although his basic work is sound, the calculations
contain several mistakes, which make his results valueless.

Overbeek (52,53) has given a derivation of the relaxation effect for
spherical particles valid for arbitrary values of KO,. Very recently Booth
(11) in a short communication announced independent work on the same
subject, which, in the main lines, seems to confirm Overbeek's analysis.
As details of Booth's work are not yet available, a short description of
Overbeek's method of approach and the most important of his results are
given.

The calculations of electrophoretic mobility (including relaxation) for
intermediate values of KO,, although in principle not more difficult than for
the extreme cases of small or large K.a> are in practice very laborious and
time consuming. This is, among other things, due to the fact that for
intermediate and large values of KO- we may no longer consider the effects
of relaxation and electrophoretic retardation separately, as we do for elec-
trolytes (small KO) . For larger values of KÖ, it is essential to include in the
calculations the mutual influence of the two effects. Moreover, it can be
inferred from the considerations on the relaxation effect for very small and
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very large KO- that the correction for the relaxation effect will be propor-
tional to the square, and possibly higher powers, of the zeta potential.
This implies that also in the distribution of the potential around the par-
ticle higher powers of zeta must be included.

In Overbeek's calculations the particle is assumed to be a rigid sphere
with a surface potential f and a charge ne spread out uniformly over the
surface. (Booth used a more general assumption about the charge of the
surface.) The particle is embedded in a solution of a (2+ — z-} valent
electrolyte. It is surrounded by a diffuse double layer of the Gouy-Chap-
man type (18,29), which, however, is deformed by the electrophoresis.

The motion of the ions is governed by displacement in the electric
field, by diffusion hi concentration gradients, and by being dragged along
by the movements of the liquid. During electrophoresis a stationary state
is attained in which, relative to the moving particle, the concentration of
each sort of ion remains constant. The particle is considered to acquire a
constant velocity u in the direction of the applied field.

The equations for the stationary state.are:

,. f n+z+e , . kT . " ! „
div erad ^ grad n+ + n+v = 0

L P+ p* J
(14)

t" n-z-e
div H— gra d

L j/—

kT
P-

grad «- + = O

where «+ and n~ represent the number of ions per cubic centimeter, p+ and
p- their friction constants, and ^ the electric potential due to the com-
bined effects of double layer, applied field, and deformation by the relaxa-
tion effect.

By assuming a uniform motion for the central particle, its Brownian movement is
neglected. This analysis is thus more in accord with the original Debye and Hückel
theory (20) of conductance of strong electrolytes than with the later improved analysis
of Onsager (50). In solutions of a single electrolyte, the correction of Onsager is essential
because in the original version of the theory, which leaves the Brownian movement of
the central ion out of account, the relaxation forces on the positive and negative ions are
different, whereas, of course, the equality of action and reaction requires that the two
forces are of equal magnitude. In a colloidal solution, however, the particles with their
double layers are always embedded in a solution of electrolyte and, except in the cases of
very concentrated and highly dialyzed sols, the total charge on the colloidal particles is
only a very small fraction of the total charge of all the ions present in the solution.

Consequently the colloidal solution can be compared to a solution of electrolyte to
which a small proportion of a sçcond electrolyte has been added. Bennewitz, Wagner, and
Küchler (6) have given an evaluation of the relaxation effects for such a mixture taking
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Brownian motion into account. From their analysis one finds, neglecting the Brownian
motion of the ion present in small quantity, an increase of the relaxation correction with
a factor of the order:

1 + PI/PS

in which pi and p2 are the frictional constants of the ions present in large and small quan-
tity, respectively. As the diameter of a colloidal particle is at least 10 times and often
100 or more times as large as that of an ion, neglecting the Brownian motion in the case
of colloids is completely justified.

The relations between charge density and potential in equation (14)
are again given by Poisson's equation (2). Since the particle is considered
to be an insulator, no discharge of either type of ions occurs at the sur-
face of the particles. (For a consideration of a conducting particle see
(52).)

The above considerations define the electric field and the ionic concen-
trations in the,double layer, except for the value of the motion of liquid,
v, in equation (14). The motion of the liquid can be completely described
by the fundamental hydrodynamic equations:

(15)
div v = 0

ï/ rot rot v -j- grad p + p grad ^ = 0

By a method of successive approximations it is possible to solve equa-
tions (14) and (15) and the resulting equation for the electrophoretic mobil-
ity is, including all terms up to f3 .

/.G»)

- z+z- 4- '«TV
kTj

£+ p+ + Z- p-

(Z-H + z-)e

The functions /(KO) and g(*a) except g3 (««) have been calculated. For
symmetrical electrolytes the electrophoretic equation can be simplified to:

67, kf

and for unsymmetrical electrolytes, neglecting all contributions propor-
tional to f 3 except the last term, which is preponderant even over the f2

terms for small values of «a :
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u —

Z+P+ + g-p- (IS)

Figure 4 and Table II show the values of the functions f (no). /i(«0 has
not been included in Figure 4 because it is identical with Henry's function
f (na, p = 0), which can be read from Figure 1. The broken line in Figure
4 shows the values of /2 and /4 as they follow from Debye and HiickeT»
theory of the conductivity of strong electrolytes.

Fig. 4. Values of the functions
f(*a) for use in the electrophoresis
equations (17) and (18).
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TABLE II

KO

Values of Correction Terms in Equations (17) and (18)
««

0.01
0.1
0.3
1
3
5

10
20
50

100
1000

AOw)

1.000006
1.000545
1.00398
1.0267
1.1009
1.160
1.239
1.34
1.424
1.458
1.495

MKO)

0.0006
0. 0125
0.0279
0.0411
0.053
0.057
0.056

0.04
0.0188
0.0102
0.0011

f» (w)

0.00009
0.00090
0.0044
0.0116
0.020
0.022
0.021
0.0146

0.00796
0.00444
0.0005

/*(«»)
0.0006
0.0107
0.0218
0.0387
0.0515
0.0546

0.056

0.04
0.0177
0.00992
0.0011

To illustrate the total influence of the correction of Henry and the re-
laxation effect on the electrophoretic velocity, Figures 5 and 6 are given.
Both have been drawn for an equivalent conductance of the positive and
negative ions equal to 70 fl~* cm.2 per gram equivalent (this value is not
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0.01 1000

Fig. 5. Electrophoretic mobility in symmetrical electrolytes (Eq. 17).
Values of eÇ/kTa.re 1, 2, and 4 or f about 25, 50, and 100 rav., respectively.
The line marked 0 forms the limit for very small values of the zeta potential.
Full lines for monovalent and broken lines for bivalent electrolytes.

0.01 1000

Fig. 0. Electrophoretic mobility in unsymmetrical electrolytes (Eq. 18).
For all the curves eC/kT values equal 2 or ? about 50 mv.
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very critical), and a temperature of 25°C. Figure 5 represents equation
(17) for symmetrical electrolytes; Figure 6 gives equation (18) for un-
symmetrical electrolytes. In Figure 5, eC/kT varies from very small
values (eC/kT —> 0) to 4, which means that the zeta potential varies from
0 to about 100 mv. For the higher values of 'ç it would have been neces-
sary to include more terms of the series ; they should be seen only as a rough
illustration of the trend of the electrophoretic velocity. In Figure 6, f is
fixed at 50 mv. (eC/kT = 2) but the type of electrolyte has been varied.

It is conspicuous that the correction for relaxation is largest for inter-
mediate values of na, which are of the order of 5-10. Since the correc-
tions are proportional to the second and higher powers of f, they tend to
reach zero for small values of f. With increasing potentials and increasing
valency of the ions, the corrections increase rapidly. But for monovalent
electrolyte and zeta potentials smaller than 25 mv. the relaxation effect is
small for any KO. and the corrections to Henry's equation never exceed
3C&a/0'

This small value of the relaxation effect justifies many an applica-
tion of Henry's equation to proteins, for which the electrophoretic mobility
often remains smaller than l p cm. v."1 sec."1, which is equivalent to a zeta
potential smaller than 20 mv. at 25°C,, or 35 mv. when the electrophoresis
has been carried out at 0°.

Figure 6 shows the remarkable fact that, with unsymmetrical electro-
lyters, the relaxation effect may be accelerating instead of retarding if it is
the ion bearing the same charge as the particle that is polyvalent.

2. Influence of Surface Conductance

It is to be expected that the double layer is a source of surface con-
ductance and we should investigate in what respects surface conductance
influences the electrophoretic mobility.

In 1903 Smoluchowski (62) pointed out that the net charge of the double
layer results in a specific surface conductivity equal to (for small values of
f):

1/
yd \

in which d is the thickness of the double layer. Moreover, the concentra-
tions of ions in the double layer are different from those in the bulk of the
liquid, and as the changes in concentrations for positive and negative ions
are different, a second contribution to the surface conductance results.
Both these effects are incorporated in the theory of relaxation and, there-
fore, no extra corrections are needed.
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In several experiments, especially on glassy-water interfaces (see Table
III), however, surface conductivities have been measured which far ex-
ceed the values to be expected from the simple theory of the diffuse double
layer. Just as, according to Henry's calculations, the mobility is de-
creased by a certain conductivity of the particle as a whole, an excessively
large surface conductance would have the same effect, lowering the mobil-
ity of a spherical particle with a factor (11) :

1 + \s/\a

in which \, is the specific surface conductance and X the bulk conductance
of the liquid. However, as long as there are such wide divergencies in
the experimental values as shown in Table III, any further discussion of
this effect seems to be premature.

TABLE III

Specific Surface Conductivities (in 10~9 fi"1) of Glass in Contact with Solutions of
0.0005 N Electrolytes

Reported by KC1 KNOs HC1 HNO»

McBain (45-47) 95
White (68,75,76) 2.2-4 3
Fricke(22) 1
Rutgers (57,59) 95
Wijga(77) —

225
50

Recently Booth (lia) and Henry (34a) independently discussed the
influence of surface conductance on electrophoresis. They concluded that,
especially with small particles, the electrophoretic velocity could be very
much lower than that given by equation (6).

3. Summary of Conditions in Which Zeta Potential Can Be
Evaluated from Electrophoresis

The practical consequence of the theoretical developments in this sec-
tion is that in certain well-defined cases f can be confidently evaluated
from the electrophoretic mobility. They are:

(1) For any value of *a if the f potential is smaller than 25 mv. and the particle is
spherical or nearly so. Application of Henry's equations is essential; the correction
for relaxation can be calculated by the above theory or may be neglected if an inaccuracy
of a few per cent is not essential.

(2) For large values of m and any value of ? irrespective of the form of the particle,
by application of Smoluchowski's equation.
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In both cases the particle should be an insulator or at least behave as
such. There should be no excessive surface conductance. In analogy to
the results obtained for spherical particles, it seems safe to assume that
also for other forms of the particles (especially for cylinders for which the
calculations of Henry and Gorin are available) the relaxation effect remains
small in the two conditions mentioned above. In all other cases the
quantitative evaluation of zeta potentials from electrophoresis has the
element of great uncertainty.

4. Experimental Work

Experiments allowing a quantitative test of the theory are unfortu-
nately very scarce. Even the simple equations of Smoluchowsld and
Henry have never been really tested, and even a convincing test of the
theory of the relaxation effect does not exist.

One of the reasons is that it is very difficult to determine zeta poten-
tial in an independent way. De Bruyn (19) has indicated an interesting
method of determining the zeta potential by potentiometry which, as far
as order of magnitude is concerned, confirms the values by electrokinetic
methods. But a closer comparison of the two principles is still lacking.

Other electrokinetic phenomena, especially electro-osmosis and stream-
ing potential, may be used to determine f, but then the identity of the
surfaces in the two types of experiments is hard, if not impossible, to in-
sure.

The most satisfying results are obtained by a comparison of electro-
osmosis and electrophoresis of relatively large particles covered with a layer
of protein to insure identity of the surfaces. These experiments give ample
confirmation of the reliability of the factor of proportionality in Smoluchow-
ski's equation, that is, for the identity of the electro-osmotic and electro-
phoretic velocity for large KQ, (4). In many of the experiments of this type
the electrophoretic velocity was rather low (< 1/item, v."1 sec."1), so that
the relaxation effect would be expected to be small anyway.

Mooney (48) did some experiments on the electrophoresis of oil drops
of different diameter in which a lowering of the electrophoretic velocity
with decreasing radius of the particles was established. Qualitatively this
is in accord with equations (13) and (16). Quantitatively the effects of
Mooney seem to be larger than the theoretical predictions. His experi-
ments, however, are not so exact that they form a serious test of the the-
ory. Moreover, the fact that they have been performed with emulsions
may have caused complications (see Sect. 11.5.)

For very small particles of CuO, Fe2O3, and A^Sa sols at very low elec-
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trolyte concentrations (KO. < 1/10), Paine found a linear dependence of the
mobility from K, which is in accord with the applicability of the theory of
Debye and Hückel if the charge of the particles is assumed to be constant.
The slope of the u versus K Une determines the value of the radius of the
particles, which seemed to be of the right order of magnitude, but has not
been determined independently.

In view, however, of the arguments given in the beginning of the next section (see
also (73)), it is rather doubtful whether in this case the charge is really independent of
K, so that the arguments of Faîne cannot be considered to be decisive.

Other experimental data will be treated at the end of Section IV.
Finally it may be mentioned that the maxima often found in electro-

phoretic mobility as a function of the concentration of the electrolyte may
perhaps be explained as an increase of the relaxation effect on the low-
concentration side of the maximum and a real decrease of f at the other
side. The fact that those maxima are usually found in colloids with rela-
tively large particles, where the "pure sols" may have a value of xa of the
order of 1-10, corroborates this explanation. In principle the same ex-
planation has already been given by Bikerman (8,9).

IV. Electrophoretic Velocity and Charge of Particles

1 . Charge and Potential

In the foregoing sections attention has been concentrated on the evalua-
tion of the zeta potential. The charge of the particles necessary to gener-
ate this potential has been treated as a magnitude of only secondary im-
portance. This point of view seems entirely justified in the case of hydro-
phobic suspensions, emulsions and the like because, in all probability, their
surface potential is much more characteristic than the surface charge.
Indeed, if the particle is considered to be in thermodynamic equilibrium
with the surrounding liquid, its potential is completely determined by the
distribution of certain ions, which are present in both phases (38,43).
Consider, as an example, a particle of a silver halide in contact with its
saturated solution, which may contain an excess of the silver or halide
ions and, in addition, any amount of other electrolytes. Then for equilib-
rium the chemical potential MAK+ of the silver ions must have the same
value in both phases. In the solid phase the chemical potential depends
only upon the characteristic structure of the solid and upon its potential :

where the index I designates the silver halide phase. In the solution
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Hn depends on the potential of the liquid and moreover on the ionic
activity:

Mn = Mir0 + e$u + kT In o-Ag

In equilibrium, MI = MIL or

rin aAg (19)

which means, that if the activity of the silver ions in the solution (the
potential-determining ions) is given (43), the potential difference between
the two phases is fixed, whereas the charge density on the surface may still
vary widely dependent on the thickness of the double layer.

On the other hand the situation changes completely if, instead of
considering particles of hydrophobic sols, we turn our attention to the
electrophoresis of large molecules like proteins. Here the whole concept
of zeta potential loses much of its attraction, and, on the contrary, the
charge of the molecule seems a more fundamental characteristic.

In regard to the electrophoresis of proteins the foregoing sections do
not lose their interest. In fact, in this case there is an additional prob-
lem. If the zeta potential has been evaluated from electrophoretic data,
it must be converted into a value for the charge of the particles. And
apart from other complications still to be mentioned, evaluating the charge
of the particles is essentially more difficult than evaluating the zeta po-
tential. In the case of the zeta potential, the value of the radius of the
particles enters into the calculations (see Figs. 1, 4, 5, and 6) as a correc-
tion factor, which only changes logarithmically with the dimensions of the
particles. For a given zeta potential, however, the particle charge is pro-
portional to the radius (small KO) or the surface (large KO) of the particle.
Consequently the charge is very sensitive to the right choice of the radius
and it is by no means easy to determine this radius or an equivalent radius,
if the particle is known to be nonspherical.

A second difficulty in interpreting electrophoresis in terms of charge is
based upon the fact that in principle an electrokinetic experiment is only
informative on the charge of the particles within the surface of shear.
This charge, however, is not necessarily identical with the total charge of
the particle, just as in general the zeta potential is not always identical
with the total potential drop between the particle and the bulk of the
liquid. Part of the counterions may be present within the surface of
shear, thereby reducing the electrophoretic charge below the charge as
determined analytically for example, by titration. This effect may be ex-
pected to be especially large in high concentrations of electrolyte, where
the double layer is very much compressed. In very dilute solutions, on the



122 J. TH. G. OVERBEEK

contrary, the double layer is so extended that only a negligible part of its
charge is present near the surface of the particles and thus might be in-
cluded within the surface oi" sheai .

2. Spherical Particles

If, for a moment, we leave the above-mentioned difficulties, it is pos-
sible to formulate a relation between charge and zeta potential, or between
charge and electrophoretic mobility.

For a spherical particle of radius a, the charge Q can be simply expressed
by noting that it is equal to the opposite of the total charge of the diffuse
double layer :

. (20)

Applying the approximative equation of Debye and Htickel for the potential
in the double layer :

$ = j-.fl.^fo-O/r (21)

which is allowed when the zeta potential is small, dif//dr in equation (20)
may be transformed into :

(22)

(23)

(24)

which for very large values of a transforms to the equation for the charge
density of flat surfaces :

a = ^p (25)

Two important corrections to equation (23) have to be considered.
The first one concerns the case in which f is not small, so that the approxi-
mation of Debye and Hiickel:

leading for the chargerto :

Q = efa(l + KO)

For large particles the charge density, a, may be important :

ff =
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must be replaced by the complete equation :

kT ,
Aw = K2 -7— -, —, (e

e(z+ -f- Z-)
(26)

Unfortunately equation (26) cannot be integrated for a case of spherical
symmetry. Muller (49) has given numerical integrations for a number of
values of m and f from which the relation between charge and potential
can be derived. Gronwall, LaMer, and Sandved (30) and LaMer, Gron-
wall, and Greiff (42) have solved equation (26) in a series of ascending
powers of the charge of the central particle. Numerical values of the
coefficients of the first to fifth (symmetric electrolytes) or third (unsym-
metric electrolytes) power of the charge are available from their work.

Gorin (24) also applied the work of Gronwall, LaMer, and Sandved to find the
correction for larger f potentials but his equation in the original paper as well as in the
book by Abramson, Gorin, and Moyer (4), is inconsistent, as it contains a sum of two
quantities of which one has a zero dimension and the other the dimension of velocity.

In Table IV some values of the quantity-/ are given, this being the
quotient of the charge calculated according to MuUer's or LaMer's method
(which lead to practically identical results) to the charge calculated in ac-
cordance with the approximate equation (23).

In Midler's terminology factor ƒ is given by :

v'(y) y
f =

\
Gronwall, LaMer, and Sandved give the following relation between the f poten-

tial and charge Q:

(27)

in which:

1
\+x

C+Z+'

z*Xt,(x), for symmetrical electrolytes only.
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The functions X(x) are available m tabular form (30,42). Correction factor ƒ now be-
comes :

ƒ = Q(Bq. 27)/ö(Eq. 23)

Unfortunately the calculations of Muller and Gronwall et al, extend only to rela-
tively small values of KO. For very large values of KO the relation between charge and
potential can be approximated by the unidimensional case of equation (26), which can
be solved exactly, leading to equation (28) for charge density v, and equation (29) for/.

_-*Iwv.(^
4jT e \ z-(z+ -r z-)

f -J — —~

exp (—2+

exp

s-)

(-^ eÇ/kT) - l)'
(28)

(29)
Z~-(z>e 4" 3-) 5+ (Sf + S-)

It is seen in Table IV that the corrections increase with increasing KÖ,
increasing zeta potential, and increasing valency of the counterions. For
eC/kT < 1, that is, for zeta potentials smaller than 25 mv., and for mono-
valent electrolytes, the corrections remain under 5%.

TABLE IV

ƒ = Qetact/Qapprox for Different Values of KO and J-
For a Sphere with Radius o A., the Charge Qexact is Equal to

0.1395a(l + KO)

ef/kT

aa values

1-1 electrolyte
KO = 0

0.3
0.6
1.0
2.0
3.0

CO

2-1 electrolyte
KG = 0

0.2
0.4
0.7
1.0
CO

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.004
1.010
1.015
1.023
1.029
1.042

1
1.022
1.05
1.09
1.12
1.307

2

1

1.019
1.041
1.063
1.13
1.17«
1.175

1
1.064
1.19
1.4

a

2.079

3

1

1.048
1.107
1 14

a

0

1.42

1
1.146
1 7

a

a

3.88
0 No data available.

One might doubt whether it is consistent to use these data for the
charge at high potentials when the zeta potential is calculated from an
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electrophoresis equation like Henry's or Overbeek's, which are only valid
for low potentials. The answer is that Henry's equation is not very sensi-
tive to the exact course of the potential curve. Higher potentials act as if
the double layer were more compressed, as if KÖ were somewhat larger. In
the equations of Overbeek, more terms of the development of equation (26)
have been included in the correction terms so that Table IV may indeed be
directly combined with the zeta potential as calculated from electrophoresis.

Another correction of equation (23) of a somewhat more speculative
character has been given by Gorin (25). In all developments given up
to this point, the electrolytic ions have been considered to be point charges,

Fig. 7. Spherical particle with
counterions showing the difference
between surface of shear and limit-
ing surface of the charge of the
double layer. r

Inner surface of double layer

which can approach the surface of the particles to infinitesimally small dis-
tances. In 1923 Stern (64), in his theory of the electrocapillary curve, indi-
cated how a correction for the finite dimensions of the ions could be ap-
plied. In the same paper he took account of a specific adsorption potential
for the ions of the double layer and of the fact that for the ions, which are
very near to the surface, the dielectric constant is much lower than that in
the bulk of the solution. Gorin applied a similar idea to the interpretation
of electrophoresis, using, however, a much simpler theory than that of
Stern, in which he took account only of the finite dimensions of the ions,
leaving aside the other corrections introduced by Stern.

In Figure 7 a spherical particle has been sketched, surrounded by a
number of counterions at the distance of closest approach. The ions of
the diffuse part of the double layer have not been indicated in the figure.
The surface of shear is formed by a sphere of radius a (to be determined, for
example, from diffusion experiments). The charge of the double layer is
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located between the radii (a -j- a() and <» ; the shell between a and (a + at)
is free of charge.

With this picture the relation between charge and potential is easily
found and turns out to be :

(30)

in which Q is the total charge enclosed within the surface of shear and J" the
potential at that surface.

Compared with equation (23), this new equation gives a correction fac-
tor in the charge equal to :

1 -f- «(a + a.)
ƒ = (31)(1 + m) (l + KO*)

Assuming for at a value of 2.5 A. and for a, alternatively, 25 A. (for ex-
ample, a protein molecule with a molecular weight of the order of 40,000)
and co (flat surface), the correction factor has been tabulated for different
values of the ionic strength in Table V. The influence of the finite dimen-
sions of the ions is seen to result always in a decrease of the charge (the more
pronounced, the higher the ionic concentrations). In contrast to the
correction mentioned in Table IV the influence of the ionic dimensions is
independent of the zeta potential and should be taken into account even
for very weakly charged particles.

TABLE V

Correction Factors (ƒ = Qexact/Qapproz) for an Ionic Radius of 2.5 A.

« - >* ÏÏ Cf V

0.00001
0.0001
0 001
0.005
0.01
0.02
0.05
0.1
0 2

Xitf

0.00259
0.00819
0.0259
0.0579
0.0819
0.1159
0.1831
0 2592
0.3662

ƒ for o = 25 A.

0.99994
0.9994
0.995
0.980
0.966
0.944
0.899
0.851
0.789

ƒ for a = o>

0.9974
0.992
0.975
0.945
0.924
0.896
0.846
0.794
0.732

Combination of equation (30) or (31) with an electrophoretic equation
like Henry's, which has been derived without taking account of the di-
mensions of the ions, is nevertheless allowed because closer inspection
shows that by Gorin's correction not only has the value of f for a given
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charge been increased by a factor !/ƒ, but the potential at any point of the
double layer has been increased in the same proportion (provided that
KOt < 1).

A difficulty in the application of equation (30) is the choice of radius at.
There is no accord in the literature on the values of radii of hydrated ions
(which should be used here), and even if the particle as a whole is spherical
its surface will certainly contain local hills and valleys of atomic dimen-
sions, and by going into the valleys the counterions can approach the aver-
age surface of shear at a shorter distance than would follow from their
radii.

So probably the best thing to do at the moment is to consider the ionic
radii at as an additional parameter whose value must be determined by
experiments and cannot be predicted without a far greater knowledge than
we now have on the constitution and interaction of surfaces of particles in
electrophoresis.

3. Nonspherical Particles

In practice it will seldom occur, except in the case of emulsions, that
the particles are exactly spherical. Unfortunately there are no theoretical
investigations on the electrophoresis of ellipsoids of a moderate ratio (say
1:2 or 1:3) of the long and short axis. The only nonspherical forms on
which data are available are a flat surface and infinitely long cylinders,
as has been mentioned hi Section III. The best way of handling nonspheri-
cal particles now is to assume that electrophoresis may be represented as
that of cylinders of finite length, neglecting the end effects. The degree of
validity of this approximation, however, is difficult to estimate.

The additional problem of evaluating the charge of the cylinder when
the zeta potential is known has been solved by Gorin (27). Applying the
approximation of Debye and Hückel, the charge Q of a cylinder of
length. / and radius a is given by :

0 =
, \+ a)

KI(KO)
- (32)

in which Kt, and KI are Bessel functions for which tables are available.
For very large particles, the situation is more favorable. The zeta

potential can be found, as treated in Section III from Smoluchowski's
equation (6), and the charge density on the surface by application of the
equation for flat surfaces (Eqs. 25 and 28). These equations may be use-
ful in the interpretation of the electrophoresis of microscopic particles,
which may or may not be covered with a layer of proteins.
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For particles that are very small compared to the extension of the
double layer again the problem is simpler. Irrespective of the form of the
particles, the symmetry of the double layer is practically spherical and all
our developments for spherical particles may be applied. The equivalent
radius of the particle necessary to estimate the charge according to equa-
tion (23) ftiay be taken from diffusion data. Unfortunately, measurements
on small particles in dilute solutions where the charge of the particles is
known from another, independent, method are very rare. The moving
boundary technique of Burton, as modified and ameliorated by Tiselius,
and which is especially adapted to small particles like protein molecules, is
unsuitable for measurements in systems containing little or no electrolyte.
The microscope method, on the other hand, which is easiest to handle in
solutions of low conductivity, is restricted by the demand of visibility in the
microscope or ultramicroscope to comparatively large particle dimensions.
H would certainly be of interest to investigate protein systems, nearly
free of electrolyte by the Hittorf method of determining electrophoretic
mobility.

4. Applications

The application of the relation between charge and zeta potential to
"inert" surfaces by Abramson and Müller (3) is very well known. They
find that for these surfaces (oil, graphite, SÎÛ2, etc.) the charge as a function
of the electrolyte concentration can be represented by a curve resembling
very much an adsorption isotherm. Although the accuracy of the f values
at the lower concentrations may be open to doubt (8,9), the fact that the
charge of the surface increases with increasing concentration of electrolyte
has been established by independent means. De Bruyn (19) and Kruyt and
Klompé (40) found, by analytical determinations, that the addition of
any electrolyte produced an increase of the charge of silver iodide. This
fact, however, should not be interpreted as a specific adsorption of one of
the added ions. As soon as ionic equilibriums between the liquid and the
material of the suspended particles are possible, the potential difference be-
tween surface and liquid is fixed (see Sect. III). The zeta potential will be
a more or less accurate image of this potential difference, and the increase
of the charge can be explained by the decreased thickness of the double
layer, more charge being necessary to produce the same potential drop over
a shorter distance.

In a very accurate investigation of the zeta potential of glass, Rutgers
(58) too finds that f can be very well interpreted as the potential of an ex-
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change electrode, the charge density being a variable of only secondary im-
portance, which adapts itself to the potential and thickness of the double
layer.

In the case of proteins, interpretation of electrophoresis in terms of
charge seems more promising because, in this case, the electrophoretic
charge can be compared to the analytical charge as determined by titra-
tion.

The electrophoretic data on proteins (and other hydrophilic colloids)
fall in two categories: the mobility of the free protein molecules can be
determined; on the other hand, the mobility of inert particles covered by
adsorption with protein can be measured,

A priori one would not expect a simple relation to exist between the
mobilities of free and adsorbed protein, because the mobility of the ad-
sorbed protein should depend upon the area covered by one molecule and
upon the dissociation properties in the adsorbed form, which might be
different from that of the free protein. Even if one assumes that the
spreading area is such that—at the same pH—the charge densities (or the
zeta potentials) of free and of adsorbed protein are identical, the mobility
of the free protein should be considerably lower than that of the adsorbed
one, because KO, for the free protein is comparatively small and the Henry
correction important.

Nevertheless, in many cases, the two mobilities are nearly identical, a
fact that has been pointed out by Abramson (1,2,4) on several occasions.
Even if by adsorption a shift of the isoelectric point is found, as is the case
for egg albumin, the slope of the u versus pH curve is the same in both cases.
Abramson (2) expressed this curious fact in a very pregnant way by imply-
ing that "on adsorption certain proteins take KQ, with them."

A satisfactory explanation of this fact has not been given. A supposi-
tion compatible with these experiments is that the form of the free protein
molecule is not at all spherical, but more like a flat disk in which the poly-
peptide chains are parallel to the surface of the disk, the hydrophobic side
chains being turned to the interior and the hydrophilic ones to the outside.
In adsorption the protein should unfold, so that the hydrophobic chains
are attached to the adsorbent, the hydrophilic chains being turned to the
water. This supposition would imply that the free protein molecule would
have a surface of low curvature and behave more or less like a flat surface
with. KO. —» co. A test of this supposition would be formed by a comparison
of the electrophoretic mobility of the adsorbed and the free form at very
low ionic strength, where the double layer around the free protein would be
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nearly spherical, thereby depressing the mobility as compared to that of the
adsorbed form.

5. Comparison of Electrophoretic Charge with Charge Determined
by Other Means

Apart -from the calculation of the charge from electrophoresis, in the
case of proteins, at least, two other methods can be used to determine the
charge.

The most straightforward method is the determination of the charge
from titration data. The titration curve of a protein gives us the number
of hydrogen ions taken up or given off by a protein molecule in given cir-
cumstances of pH and ionic strength. With each hydrogen ion taken up,
the charge increases by 4.8 X 10~I0e.s.u.

Another method has been worked out by Adair and Adair (5). It con-
sists in the calculation of the charge from Donnan equilibriums. Although
in principle this method looks very attractive because it should include the
influence of ions other than H+ ions, it should not be forgotten that es-
pecially in more concentrated solutions the interpretation of Donnan
equilibriums entails corrections for activity coefficients, which are dif-
ficult to estimate exactly.

Tiselius and Svensson (67) determined the electrophoretic velocity of
egg albumin at a constant pH of 7.10 but different values of the ionic
strength and calculated the charge by application of Henry's equation com-
bined with our equation (23), assuming a, = 27.5 A. as the radius of the
molecule.

Table VI shows a comparison of the charge thus calculated from electro-
phoresis and as determined by Adair and Adair from membrane poten-
tials. The agreement is very satisfactory.

A direct comparison of these data with other titration data cannot be
given because the titrations, e.g., those of Cannan, Kibrick, and Palmer
(16), were made in sodium chloride solutions, whereas the data of Tiselius
and Adair are for phosphate buffers. The last column of Table VI gives
the charge as determined by titration data. The titration curves have
been shifted, so that they pass through the electrophoretic isoelectric point.
At low values of the ionic strength, the agreement among the three methods
is good, but, at higher values of the ionic strength, the charge as determined
by titration is markedly higher than that by the other two methods.

This difference between electrophoresis charge and charge by titration
is still more pronounced in an investigation by Longsworth (44). He com-
pared titration data and electrophoresis of egg albumin over a wide range
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TABLE VI

Comparison of the Charge of a Molecule of Egg Albumin at pH 7.10 Expressed in the
Number of Elementary Charges by Three Different Methods

Ionic strength

0.01
0.02
0.05
0.10
0.20

K X 104

1.16
(1.00)
0.760
0.670
0.570

na

0.88
1.24
1.95
2.75
3.9

Q from
electro-

phoresis

12
12.4
12
13.2
14.1

Q from
membrane
potentials

12
12.6
13.1
13.8
15.1

0 from
titration
curves

13.8
14.7
16.0
17.0
19.1

of pH using only buffers with monovalent ions and, although a beautiful
parallelism exists between the two sets of data, the electrophoresis charge
is only 60% of the charge by titration (see Fig. 8).

+ 30

^ K
_UJ

-30

Fig. 8. Charge by titration and electrophoresis charge of egg
albumin (44). The broken curve is found from the continuous curve
by multiplying the ordinates by 0.60. Ionic strength = 0.1.

In Figure 8 the electrophoresis charge has been calculated using Henry's
equation and our equation (23). If the relaxation effect and the correction
for large potentials (see Table IV) are taken into account, the electrophore-
sis charge is increased by less than 5%. Introduction of the Gorin correc-
tion for the finite dimension of the ions (Table V) gives a decrease of the
charge by some 15%, whereas if the particles are considered to be cylindri-
cal rods instead of spheres the charge is increased by about 20% (4, p. 154).
Neither correction is sufficiently large to reconcile the difference between
the two sets of data.
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The larger difference as compared to the data of Tiselius and Svensson must be
ascribed to their use of phosphate buffers, which apparently increase the electrophoretic
mobility substantially. This difference cannot be ascribed to the influence of the re-
laxation effect, which in the circumstances used here is never larger than I or 2%. A
specific adsorption of phosphate ions seems the more plausible explanation (63). '

A similar comparison between the titration curves and the electrophor-
etic mobility at an ionic strength of 0.02 has been made by Cannan, Palmer,
and Kibrick (17). Here again the charge by titration is about 20% higher
than the electrophoresis charge and the difference cannot be accounted for
by the correction factors of Tables IV and V, nor by the relaxation effect.
Gorin and Moyer (28) mention that by their theory they find a quantita-
tive accord between the two sets of data. It is not clear, however, whether
they mean the introduction of the assumption that the particle is not spheri-
cal but more nearly cylindrical, or their theory that the binding of hydro-
gen ion is independent of the ionic strength (see below). Both assumptions
would be expected to bring the two data nearer to each other.

For serum albumin B the situation is similar to that of egg albumin.
Mobility data of Keckwick (37) and Gorin and Moyer (28) can be com-
pared to titration data of Gorin and Moyer (28). For small values of the
ionic strength, the agreement between charge by titration and electro-
phoresis charge is satisfactory. At higher concentrations of electrolyte
(ionic strength 0.02 and 0.1), the charge by titration is markedly higher
than the electrophoresis charge.

The difference between charge by titration and electrophoresis charge
has been interpreted in two different ways. Cannan, Kibrick, and Palmer
(16), and Longsworth (44) assume that the titration curves give essential
information on the hydrogen ion bound to or released by the protein. At
higher ionic concentration, however, an important absorption of counter-
ions exists which diminishes the electrophoresis charge. Gorin and Moyer
(28), on the contrary, assume that the binding of hydrogen ion is essentially
independent of ionic strength, so that at any ionic strength mobility data
form a direct measure of hydrogen binding. But the charge by titration is
apparently too large, because not only H+ ions but also undissociated mole-
cules of acid or base are bound to the protein. This assumption seems a
bit artificial, especially since the difference in titration curves at different
values of the ionic strength can be explained by the electrostatic interaction
of the charges on the protein. This interaction is diminished at high ionic
strength due to the screening effect of the double layer.

The binding of counterions assumed by Longsworth and Cannan need
not necessarily be ascribed to specific interaction. It seems possible that
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at high ionic strength a part of the counterions is present within the surface
of shear (which also contains a certain amount of water of hydration),
and by a simple steric effect diminishes the electrophoresis charge

It cannot, however, be denied that, in the cases mentioned above,
which are the only ones forming a real quantitative test of the theory of
electrophoresis, the situation is still far from satisfactory. It may be
hoped that a better insight in the adsorption of ions other than H+ and a
more accurate knowledge of the form of the proteins will bring about a
more complete accord between theory and experiments.

6. General Conclusions

Since the influence of the relaxation effect has been included in the
theory of electrophoresis, the basis for estimating the zeta potential from
electrophoretic mobility seems rather sound.

There are, of course, still additional developments to be desired, essen-
tially:

(1) An extension of the calculation of the relaxation effect to higher values of f.
(2) A theory of electrophoresis for particles of other forms especially for ellipsoidal

particles and for randomly kinked long chains,
(3) A well-founded explanation of the equality of electrophoretic mobility of free

and adsorbed proteins.

The relation between the charge and the zeta potential, although in
principle much easier to formulate than the relation between u and f, gives
rise to serious difficulties in application, because either the form and di-
mensions of the particles are not known with sufficient accuracy, or because
there really is an essential difference between the electrophoretic and the
analytical charge as a consequence of the adsorption of other than hydro-
gen ions.

The author wants to emphasize a remark made by Booth (11)—that
what is most needed in the present state of the theory are better experi-
mental data to compare with the theory. Especially useful information
could be derived from :

(1) Comparisons between electrophoretic and electro-osmotic mobilities of identi-
cal surfaces especially at high J" potentials and low values of the ionic strength.

(2) Comparisons between the electrophoresis of free and adsorbed proteins at low
values of ionic strength.

(3) More data on titration and electrophoresis of the same object, again at low
ionic strength.
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