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THE DIMENSIONS OF CHARGED LONG CHAIN
MOLECULES IN SOLUTIONS CONTAINING

ELECTROLYTES I)

BY

J. J. HERMANS and J. TH. G. OVERBEEK
(Laboratory for inorganic and phys. chemistry, University of Groningen.

and van 't Hoff Laboratory, University of Utrecht).

If a long chain molecule in a solution carries electric charges. the
statistical coil is inflated, and the average square of the distance between
the ends of the chain is larger than in the uncharged stak. For a number
of properties the determining factor is the value of ~'k(r\)av. where rk
is the distance between the k'th link in the molecule and the centre of

gravity. This quantity is proportional to the square of the effective radius
and is related to the square of the distance between the ends by a simple
formula (section 2). provided the radius of the coil is small compared
with the length of the extended' chain.

In section 3 the electrical free energy of the molecule is derived as a
function of effective radius on the assumption that no electrolytes are
present. This free energy determines in its turn the average dimensions
of the coil. .

In section 4 a similar theory is developed for charged polymer molecules
in the presence of electrolytes. The change of the effective radius with
the charge on the polymer and the concentration of the electrolytes is
calculated. In the limit of high electrolyte content the equilibrium bctwee:1
the interior and the exterior of the polymer coil may be considered as a
Donnan equilibrium.

§ I. Introduction.

In the interpretation of many properties of solutions of long chain
molecules, the extension of the statistical coil is a very fundamental
factor. When the large molecule is electrically charged by ionization
or by adsorption of ions. the charges will drive the constituent parts
of the chain apart. thus causing an inflation of the coil. As a variety
of synthetic and natural high .polymers (e.g. poly~acrylic and poly~
methacrylic acid. polyvinylpyridonium~salts 2), gum arabic. agar.
oxidized starch. nucleic acids, proteins) contain ionizable groups. a

-----.---.-
J) A preliminary account of the theory developed in this paper was presented

at the colloquium on large molecules held in Liege in April 1948, and has been
published in Bull. soc. chim. Belges 57. 154 (1948).
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theoretical investigation of the above mentioned inflation seems worth
while.

Besides the total charge of the chain (or its degree of dissociation)
and the distance between the charges on one chain. the electrolyte
content will be an important factor, as the formation of ionic
atmospheres around the charged spots will diminish the interaction.
Given the typical long range character of the electrostatic interaction
it may be expected, that a treatment in which the charges are assumed
to be smeared out over the whole coil will be satisfactory. A treatment
based on a pairwise interaction of the charged spots (each surrounded
by its own ionic atmosphere) seems less promising, as usually the
thickness of the ionic atmosphere is much larger than the distance
between neighbouring charged spots and in many cases even larger
than the dimensions of the whole coil. Only in the case of very high
concentrations of electrolyte the picture of interaction of separate
charged spots might be preferable but in those circumstances the
whole effect of inflation is negligible.

The description of the effect may then be divided into two parts, viz.

A. The calculation of the free energy (F) of the system of charges
for a given configuration of the coil (§ 3, § 4).'

B. The determination of the most probable form of the coil. by
taking both the a priori probability and the free energy F into
.!ccount (§ 2).

Thermodynamic properties like the solubility of the macromolecular
substance or the dissociation of its charged groups will be governed
especially by the free energy of the molecules. On the other hand all
dynamic properties like viscosity. sedimentation velocity, double
refraction of flow. or electrophoresis will be strongly dependept upon
the modified form of the coil.

In this paper special attention will be directed to the viscosity of
solutions of charged long chain molecules. A discussion 3) of the
dissociative properties of these systems has been presented at the
colloquium on large molecules held in Liege in April 1948.

The treatment of the viscosity seemed especially promising, because
the influence of electrolytes on the viscosity of large molecules has
already been investigated and is known under the name "electro-
viscous, or quasi-viscous effect" 4).- - -

2) R. M. Fuoss and U. P. Strauss. J. PolymerSci. 3, 246 (1948).
3) 1. Th. G. Overbeck, Bull. soc. chim. Belges, 57,252 (1948).
4) H. R. Kruyt and H. G. Bungenberg de long, Z. physik. Chern. 100, 250

(1922); Kolloid Beihcfte 28, I (1928); H. R. Kruyt, Colloids, 2nd ed. 'p. 183, Wiley,
New York 1930.

..
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The electroviscous effect consists in a decrease of the viscosity by
addition of relatively small amounts of electrolytes which has been
established by Kruyt, Bungenbery de fong and their coworkers for a
large number of hydrophilic colloids, e.g. gum arabic, agar-agar,
starch, and many others. Fig. I shows how the viscosity of a solution
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Fig. I. Electroviscous effect of gum arabic. The relative increase of
the viscosity, (17,-170) /110for the pure sol is arbitrarily taken as 1000/0,

of gum arabic is decreased by electrolytes 5). The influence of
different electrolytes is mainly determined by their yalency, the ions
of larger positive valency having a stronger effect in low concen-
trations, whereas the viscosity reached at high concentrations is
practically independent of the individual properties of the electrolyte
used.

This effect has been generally explained on the basis of a theory
given by von Smo/uchowski 6) according to whom the viscosity of a
suspension of massive spherical particles is increased by the presence
of an electrical double layer around the particles. Von Smo/uchowski
derived the following equation,

'YJ.-1/0 5
r

I I CE'

)
2'

J

- = - <P I +--- (--- (I)
'/0 2 Al]oR2. 2 1T

in which 'YJ.is the viscosity of the suspension, 1]0that of the dispersion
medium, <P the concentration by volume, A the conductivity, E the

S) H. R. Kruyt and H. 1. Edelman,Kolloid-Beihefte36, 350 (1932).'
6) M. van Smoluchowski, Kolloid.-Z. 18, 190 (1916); d. also W. Krasny-Er.gen,

Kolloid-Z. 74, 172 (1936); F. Booth, Nature 161,83 (1948).
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dielectric constant of the medium, R the radius of the particles, and
:; their electrokinetic potential.

The electroviscous effect was then explained by the decrease of the
;'~potential and the increase of the conductivity accompanying the
addition of electrolytes.

It is however very doubtful whether the hydrophilic sols mentioned
above contain massive spherical particles, A much more probable
structure, more in accord with the high intrinsic viscosity of these
sols, is a randomly kinked long chain which mayor may not contain
ramifications. In that case the theory of von Smoluchowski cannot be
applied and the electroviscous effect may be explained by a diminution
of the interaction between the charged spots on account of the
screening effect of the ionic atmospheres which entails a more dense
form of the kinked chains. In the following sections a quantitative
description of this image will be developed.

§ 2. Statistics of the polymer coil.
Consider a chain in which N + 1 equal mass points or "beads"

numbered 0, I, . . . ., N are connected by N links of length A, the
k'th link connecting the (k - 1) th with the k'th bead. These links
are assumed to be of the nature of the so~called statistical chain
elements introduced by Kuhn 7). i. e., the orientation of any of the
links in space may be considered as being practically independent of
that of the others. Let rk be the distance of the k'th mass point from
the centre of gravity. Then, by definition,

N

2,' rk = 0
k=-O

(2)

We shall consider the value of .2.'k(r2k)"'" where av denotes the
statistical mean. This quantity is determinative for various properties
of the polymer coil. Debije 8) has shown, for instance, that the
intrinsic viscosity can be described in terms of a radius R defined as
follows

R2=35N 2k(r2k)av (3)

This is true 9) irrespective of whether the coil is free~drained 10)
or otherwise. The birefringence of flow has so far been developed only
--------

.) W. Kuhn. Kolloid-Z. 68, 2 (1934); 76,258 (1936).
0) P. Debije, J. chern. Phys. 14. 636 (1946); see also Kramcrs, reference 11.
9) P. Debije and A. M. Bueche, J. chern. Phys. 16, 573 (1948); Internat. Congress

of Pure and Applied Chemistry, London, July 1947.
10) W. Kuhn and H. Kuhn, Helv. Chim. Acta 26, 1394 (1943).
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for free~drained molecules 10) 11), where it is proportional to R2. A
further property in which 1:k(r2k)av plays a decisive part is the
dissymmetry of light scattering 12). We shall therefore focus our
attention on this quantity and use Debije's definition (3) for the
effective radius of the coil.

In a random uncharged coil the probability of finding a distance h
between the ends is proportional to

dh h2 exp (- 3 h2/2 NA2). (4)
The average square of this distance is

(h2).v = NA2, . (5)

and the value of R2 is found to be S)

R2= 158 NA2 . (6)
We need not derive this formula for R because it will follow at

once from a more general formula given below. If the polymer coil
carries electric charges, it tends to become inflated, which means that
larger values of h are somewhat more frequent. The new distribution
of h~values is given by the expression

(
3 h2 F

dh h2 exp - 2 NA2 - kt). . (7)

where F is the electrical free energy of the molecule. Consequently
we shall find the average square of h from the equation

f
'" 3 h 2 F ..

dh hi exp (-. 2r,fA'i - kT)
(h2)av= -~ ,-----

f
'" 3 h2 F
fih h2 exp (-- 2N.~f - k t)

(8)

The appearance of the free energy instead of the energy in the
Boltzmann exponent is explained by the fact that we are to account
for the effect of the charges on both the energy and the entropy of
the system. The factor exp(- 3 h2f2 NA2), being proportional to the
number of configurations for a given h~value, determines the
configurational entropy of the polymer molecule irrespective of its
charge. When taking account of the potential energy of the ionic-
--.-----.-

11) H. A. Kramers, Physica 11, 1 (1944); J. Chern. Phys. 14, 415 (1946); J. J.
Hermans, Physica 10,777 (1943); Rec. trav. chim. 63. 25 (1944).

a) B. H. Zimm, R. S. Stein and P. Doty, Polymer. Bull. 1. 90 (1945).
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charges we must therefore add the entropy factor which takes care
of the probability of finding the charge distribution required.

In sections 3 and 4 the electrical free energy will be calculated in
terms of the radius. R, of the coil. To evaluate the equation (8) we
shall need the relation between hand R. This can be found from

statistical considerations as follows. Consider an assembly of polymer
molecules whose one end is at distance h from the other end, and
let X. Y. 2 be the components of h, so that X2 + Y2 + 22 = h2,
We assume that h «(NA. If N is large. this holds good for the
majority of molecules. In fact. X2. Y2 and 22 will almost always be
of the order N A2 and hence small compared with N2A2.

Let :,(kbe the cosine of the angle between the k'th link and the
x-axis. The values of the .:;t's may be considered as the result of a
lottery in which the sum X/A is distributed statistically between
N members. Consequently the distribution of .-x-values is a simple
canonical distribution 13)

dx f (IX)= do)(c exp (g<x),

where g is determined by the requirement
(<X)av= XfNA . . (9)

Since we assume that X (( NA. we find g = 3 X/NA. Further,
according to a well-known formula 14) we have

(x2)av - (x)2av= ()(<X)avfi)g

In the present case this becomes If3. and consequently

(x~)av= ~ + 0 (~),

. (11)

Now let us first calculate the average square of the distance
between the center of gravity and one of the ends of the molecule.
Taking bead number 0 in the origin, let ~k1]kCk be the coordinates of
the k'th bead. Clearly,

k

~k= A I <Xj . (I2)
1=1

The coordinates ~z 1]zCz of the centre of gravity are given by
equations of the form

N

~. = (N + 1)- I I
k=O

.The average square of this quantity is

A2 (N + 1)-2 ~(Ot2)avIj (N -;)2 + .(OtOt').vI Ik (N-j) (N-k)~.
Taking acc,ount of the equations (10) and (11) and carrying

the summation we obtain

N-I

~" = (N + 1) \ A I (N -j) Oti+\.
j=O

out

((3)

. (\0)

We now proceed to calculate the average square of the distance
between the beads and the centre of gravity. If Xk Yk Zk are the
coordinates of the k'th bead, taking the centre of gravity as origin, we
have Xk= $k~ $z. and Ik$k = (N + 1)$. because of equation (2).
Consequently.

---------

.2'k X2k= Ik ek - (N + 1)~2..
From equation (12) it follows that

. (ek)av = A2 k (<x2)av+ A2k (k-l) (~<x')av

or. in view of equations (10) and (11),

(1:2) ~! A2k+A 2k(k-l) (X2._ t.)." k av- 3 N NA2 3'

Summing, and using the formula (13) for ($z2)"v we obtain

~ ( 2 ) _ 1 N 2A2 I N 2A2 (
X2 1

)k X k av - 18 + i2 NA2 - 3' .
It is obvious that similar results apply to Idy2k)av and

1.'k(z2k)av' giving as a final result

~ k(r2k) =! N2A2 + .l N2A2 (_J1.~._ 1)=.l N2A2 (1 + ~=-)
.

av 6 12 NA2 12 NA2 .
In view of the definition (3) this means that

where 0 signifies "order of magnitude". We shall need. further, an
expression for the average value of :xx', where G<and a' are the
direction cosines of any two links in the chain with respect to the
x-axis. This can be found by first determining the average [</] m of
the second link if it is known that the cosine of the first is :;t. and

then averaging the product C([';(']m over all possible a-values. In other
words.

(<XOt')av= (0)([<x']m)v'

However. [ex']," is nothing but the average value of the cosine
found in an assembly of N - 1 links with the condition that the SUIh
is X/A-J.. Or also. [.-x']m= (N-1)-I. (X/A-a). which gives

13) W. Kuhn and F. Griin. Kolloid-Z. 101, 248 (1942).
14) See, for example, E. Schrodinger, Statistical thermodynamics. p. 25, (Cam-

bridge University Press 1948).

---
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h2 '

R2 = 3~ NA2 (I + NA2) : "

(I i)

the electrical free energy calculated on this assumption is practically
the same as that found on the basis of a constant charge der.sity.

Let us first consider this case of constant o. and let t be the
dielectric constant in the interior of the coil. If the coil is not too
dense. t may be identified with the dielectric constant of the
surrounding solution. The electric potential. 1f'. will satisfy the
following differential equation:

6.'IJ' =:=- i :T'1lt inside. and zero outside the sphere. while the
boundary conditions are: V' is everywhere finite and zero at infinity;
Ii' and d'p/dr are continuous at the surface of the sphere. This problem
has the following solution

'I'= i~~3 (3 R2- r2) inside the sphere
Ze

'I'= ' . outside the sphere.Er

We find the electrical free energy by integrating 1/2. r!'I1over the
entire volume of the sphere. giving

3 Z2e2
F = , . . (19)5 F.R

This. then. is the relation between Rand h. When averaging over
all values of h we find. for uncharged random coils where
(h2)"" = NA2. Debijc's value (6) for R2. as it should be.

§ 3. Electrical free energy ~nd average dimensions of charged
coil in the absence of electrolytes.

Suppose the polymer is dissolved in a solution containing electro-
lytes. Then the charges fixed on the polymer molecule will be
surrounded by an electric double layer. This double layer is very
diffuse if the electrolytic solution is dilute. in which case it may
extend over distances which are large compared with the dimensions
of the coil. We shall first consider this limiting case. because it allows
of the simplest mathematical treatment and therefore serves to. bring
out most clearly the nature of our method.

We treat the charges inside the coil as a continuous charge of
density *) [} and consider two models. The first model assumes that
the shape of the coil may be approximated by a sphere of radius R
and that [} is constant throughout this sphere. In this case the total
charge of the molecule is

Ze = 4/3:T R3 (!
In the ,second model we assume a charge density of the form

!! = a exp.(-b2r2) , (16)
where a and b are constants. The constant b is chosen in such a
manner that the average value of (2 satisfies the equation (3) .
according to which it must be equal to 3 R2/5. This requires that

b2 _ 5
'-iR2 '

(15)

In our second model. where (! satisfies equation
1:::.'11 = - 4 nelt everywhere. which gives. considering
finite in the centre of the coil and zero at infinity.

(16). we have
that 'I' must be

1 J b'u2_2.na due-
'I' - Eb2 r

o

(17)
o

To ensure that the total charge is Zc, we must have

a =Ze b3fTl312 . (18)
The actual charge distribution in the coil can probably bl>

approximated quite closely by a Gaussian form of the type (16). but
for our purpose this is not very important because we shall show that

As (5/4 ;r)'!' = 0,63. the difference between this result and the
formula (19) is very slight. showing that the value of F calculated
is not very sensitive to the charge distribution assumed. When
applying the result (19) to evaluate (h2) :n' in equation (8). we are
confronted with the integrals

J'" 3 h2 3 Z2e2.
dh h4 exp (- 2NA2 - 5' ;:RkT).) In the following treatment the total charge of the coil i3 supposed to be

constant, which implies, that complete dissociation of the charge bearing groups is
assumed. Incomplete dissociation would imply a dependence of the charge on the
dimensions of the coil and on the electrolyte content (c.E. footnote 3) and would
complicate the treatment of the electroviscous effect. without adding fundamentally
new points of 'view.

o

o
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where R is related to h by equation (14). Let us introduce the
auxiliary dimensionless quantities x and y according to

2 _ h 2. 2 _36 R2 _1 + 2 (20)x - NA2' Y -'5- NA 2- x . .
Then Y:i (y2),1\ represents the square of the radius of the charged

coil divided by that of the uncharged coil. and the average value of
x2 is given by the ratio of the following integrals

which is represented in fig. 2 as a function of p. Thus. all we have
to do is to solve (23). i.e. to read y2 from fig. 2; the value found is
practically identical with (y2)avo In the limit of large p-values one
finds

(24)

f1= }8 1. Z2e2. SJ/S AYN EkT
(22)

Since for a given polymer in a given solution the .charge. Ze, is

proportional **) to the chain length. N, the quantity p in equation (22)
is proportional to N3f2 and thus. in the limit of high p-values. (y2) av

becomes proportional to N. The validity of the results obtained in this
section is restricted only by the assumption made in section 2. accor-
ding to which h (( NA. If the charge becomes so high that the coil
is ~traightened out to a large extent. our approach to the problem
becomes inadequate.

J'" 3 f1 J'" 3 p'
P = dx Xi exp (- 2 x2 - . ,); Q = dx x2 exp (- :2 x2- -). (21), y . y,

o o

provided

9

-~13
10 15 20 25

§ 4. Electrical free energy and average dimensions of charged
coils in electrolytic solutions.

A similar theory can be developed if electrolytes are present. Here
again we shall consider two models. one with constant density of
charges fixed on the polymer and one with a charge distribution given
by: equation (16). If nj is the number of ions of charge ej in unit
volume. and Cj the average number at a large distance from the
polymer molecule. we may write. for both models

nj = c; exp (-eiV'/kT) . . (25)

Let e. as before. represent the charge density due to the charges
fixed on the polymer. Then e + ~i ej nj is the total charge density. and

l:w = - 4~n (Q+ 2.'j ej Di) (26)

Henceforward we shall use the Debije and Hiickel approximation
for the exponentials in (25). Introducing the well-known reciprocal
characteristic length. x. of the Debije and Hiickel theory.

x2 = 4.nIj ~Ie2; (27)EkT

6v-' - x2V'= - 4 ;relE (28)

In our first model. where (! is constant for r < R and zero for r> H..
while the boundary conditions are the same as those mentioned in
the previous section. we find

This quantity. f1 is also dimensionless. The integrals P and Q can
be evaluated graphically. but it was found that the ratio P/Q is given
within a few per cent by the square of the value of x for which the
function

x3 exp (- ~-x2 _t),2 y.
has its maximum value '*).

This maximum value determines y as the solution of the equation

y2 _ 2 P
y3 Y2-=-'1 =:3 . . (23)

10

Fig. 2. y~ as determined by equation (23).

.) For example. with fJ = 6.9. a graphical integration gave (y2)"V = 2.80,
whereas the solution of equation (23) gives y2 = 2.85. With {J= 30 the result of
the graphical integration was (y2).v = 5.57 and the solution of equation (23) gives
y~ = 5.60.

._--
**) This is only exact if the charge is due to strongly dissociated groups. If

th~ dissociation is incomplete. it will depend among other things upon the chain
length. so that the proportionality between Nand Ze is lost. See reference 3.

8 y2

7

r6

5

4

:/ 5
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i Ir(! 2 Ir(! e"r --- e-xr
r <R, 1p = --- --- e-xR (I + xR) ----------f,X2 EX3 r

2 .TO

~

~ e-"r
r>R.1p=--'=- (I +xR)e-xR--- (l---xR)e"R(

fX3 ') r

The electrical free energy of the system is equal to the work done
when charging the polymer molecule while equilibrium with the
electrolytic solution is maintained. Here again this is found by
integrating ~ (!V'over the interior of the sphere.

One might conceive that the spatial rearrangement of the electrolytic
ions, which accompanies the charging process. would also contribute
to the free energy. This rearrangement. however. takes place auto-
matically, which means that it does not change the free energy. 'To
express this more explicitly 15) we remark that an ion of type i needs
an energy U =ejV' to penetrate into a region of potential 1/'.but at the
same time the entropy is changed by an amount S = -k In n;/cj =
=cj1f'/T. because the concentration in this region is Ciexp(-ej "I'/kT).
Consequently the free energy U-TS is not affected by this process.

For the 'present problem. replacing 4/3 :nR3(! by the total charge.
Zc, of the polymer molecule. and abbreviating

"R = p (29)
we find

3 Z2e2, 5 15 p2 --- 1 + (I + p)2 e 2pI
F = 5 ';R 12p2 --- i --. pS - \ . (30)

Next, let us consider the second model. where (! is given by equation
( 16). Here we shall make use of a short-cut by calculating the free
energy directly without evaluating the electric potential 'If',The mathe-
matical details are given in the appendix II. where it is shown that
the free energy becomes

exp (~2) J~w e--<U2~
p/1-'5

Both the results (30) and (31) are rather complicated. but it is 5

obvious from table I that they are almost equal numerically and can
be represented quite accurately by the simple interpolation formula

(31)

. (32)

15) E. J. W. Verwey and J. Th. G Overbeek, Theory of the stability 0f
lyophobic colloids, p. 54, Elsevier, Amsterdam 1948.

j
I

I

I

r

r
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Table I.
5 ER

Values of 3 Z2e2F accordingto equations30. 31 and 32.

This proves that here ag-ain the spatial distribution of the charges
fixed on the polymer is not very important for the result of the
calculation. We shall use the interpolation formula (32) to compute
the average value of h2 (and thus of R2) from equation (8). Using
the quantities x. I} and fJ defined by the equations (20) and (22), and
abbreviating

G = ~ x2 --- -: (I + 0.6 p + 0.4 p2) 1

we find (x2) ay as the ratio of the following two integrals'

(33)

'" '"

u= JdxxiexpG; W= Jdxx2expG.
o o

In these integrals p = x R and thus. according to the equations (20).

5 5
p2 = . NA2 x2y2 = _ NA2 ,,2(1 + x2) (34)36 36'

The integrals U and W were evaluated graphically for a few typical
values of fJ and p/y and it was found that here again the ratio U/W
is given with surprising accuracy by the square of the value of x. for
which the function x3 exp G reaches its maximum value. Takiqg into
account the relations (20) and (34) between x. y and p. this means
that (1}2)a\' is determined by the solution of the following equation

3 y2 --- 2 (l + 0.6 p + 0.4 p2j2 fJ
y .-- -. -- --- - =. (35)

y2 ___ 1 1 + 1.2p + 1.2 p2 3

Fig. 3 gives I) as a function of p/y for a number of {I-values. The
points inserted in this figure represent the exact results. (1}2)'/"n' of a
graphical evaluation of the integrals U and W; (a) with fJ = 30 and
p/I) = 1. (b) With P = 15 a;nd p/I} = 0.2; (c) with /1.= 15 and
p/I} = 2. It is seen that the graphical integration leads to practically
the same result as the solution of equation (35). Finally. fig. 4.
represents y2 as a function of p2/y2.

p = "R I 0 I 0.5 I

I
2 I 3

I

I1 I 4
! I I '"

. I _L..__ I '-

eq. 30 1 0.67 0.47

0.251 0.15

0.10 2.5jp2
.. 31 1.05 0.72 0.51 0.28 0.17 0.11 2.6jp2.. 32 1 0.70 0.50

0.27 , 0.16 0.10 2.5jp2
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Fig. 3. y as a function of ply
for various values of fl.

Fig. 4. y2 as a function of p2/y2
for various values of fJ.

In view .of the relati.on (34), the quantity p2/y2, far a given palymer,
is prapartianal ta %2,i.e. prapartianal ta the electralytic cancentratian.
As is abviaus fram the relatian (35), the dimensians .of the palymer
cail became narmal (y2 = 2) if the elec.trolyte cantent is suHiciently
high (p2 very large), but fig. 4 shaws that this narmal value .of y2 is
appraached very slawly. It is further ta be remembered that y is the
factar by which the effective radius .of the polymer cail is increased
by the influence .of the charges. Far example, in the case .of a
campletely free-drained palymer malecule, where the intrinsic viscasity
is prapartianal ta R2. the value .of y2 represents the ratia between the
intrinsic viscasity .of the charged malecule ta that .of the uncharged
.one, .or alsa, the ratia .of the intrinsic viscasity .of the charged malecule
in the electralyte cansidej:ed ta that .of the same malecule in the limit
.of very high electralytecantent. In the case .of a malecule which is
nat campletely free-drained .one wauld have ta take inta accaunt the
c:hange in the density .of the cail as a result .of the change in
dimensians 16).

There is na daubt that the general character .of fig. 4 is the same
as that .of .the experimental curves in fig. 1. A quantitative camparisan
will be passible if the charge and the malecular weight .of the palymer

16) See Debije's theory, reference 9.
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are knawn. For the present we can fine .ourselves to .observing that
twa restrictians must be made. As mentianed at the end of § 3. the
linear dimensians' .of the palymer cail must remain small campared
with the maximum extensian NA: in the present case. hawever. where
the electralytic ians play a part in the phenamenan. the validity .of
.our results is restricted by .one further conditian: the Debije and
Huckel appraximatian must remain valid. i.e., 1p shauld not be taa
large.

Appendix I.

Donnan equilibrium in the limit of high electrolyte content.
Consider the limiting case in which p( = "R) is large compared with unity. This

means that the electric' double layer is thin compared with the radius of the sphere;
in other words, the electric potential is zero if r > R and the distribution of ion5
outside the sphere is uniform. In this limit we may consider the equilibrium between
the interior and the exterior of the sphere as a simple Donnan equilibrium; thE:
"surface" of the sphere acts as a membrane which is impermeable to the charges
fixed on the polymer. This concept implies that the charge density in the interior
of the coil is uniform. but we know already that this makes no difference to the
result anyhow. From equation (30) it is seen that F approaches the value

F = .:3_(Ze)~ ~ = 2- (Ze)2 = 2 n1Ze)2 .(y = 4 ;rR3 ) . (36)
5 ER 2 p2 2 E,,2R3 E,,2y 3

This result is in conformity with the requirements of the Donnan equilibrium. In
fact, if 'I' is the electric potential and nj the concentration of ions i inside the sphere.

(
ei'l'

)
If

(
If

)
2

ni=ciexp iZ"f =ci-cieikT+J/2cie/ kT

r!+ Ii nj ej = 0 P = kT l.'i In; --Ci ),

where P denotes the osmotic pressure. In conformity with our previous calculations
we consider ej'l'/kT as a small quantity and thus find to a first approximation

kT ,,2 2 1rZ2e2P - "-..- -- Ii Ci ei2 2 - E,,2y2 .

This is in agreement with the result (36). because P = -aF/a V. As regards the
dimensions of the polymer molecule. it follows from equation (35), that in this
limiting case

y2 - 2 5 fl
y3.__-

y2_ I - 2 p2'
Considering the relations (22) and (34) this means that

y1-2 3 (
36

)3/2 Z2e2

.y5 y2 _I = f 5A2N ,,2,<;kT= J., say.

If the effect of the charge Ze is large, the solution of this equation approaches
the form y2 = l2/S which, since Ze is proportional to N, means that y2 becomes
proportional to NIls.

Appendix II.
Derivation of equation 31.
If the charge density, ~, conforms to equation (16). the electrical free energy of

the polymer molecule in the electrolytic solution is

1.6
Lr -Ij'Y

lA'
.0 0.4 .0.8 1.2 1.6
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F = 2 .'raJ:r r2 'I' exp (- b2r2)
. . . (37)

o

where 'i' is the solution of the differential equation

6.11'- %2,1'= - 4 .Ialr. exp(- b2r2) . . (38)
To compute F. let us consider the function '

E(t) = J:r 'I' r2exp (- tr2),. (39)
o

'where t is a variable and 'I' still conforms to equation (38). Then. clearly,
F = 2:7 a E(b~). Now differentiating E(t) with respect to t, we find by partia:
integration of the result obtained

dE J
'"

= -. dr r4'I'exp(- tr2)= -dt
o

On further partial integration,

'"
3E I J d'l'
-- -, dr r3 -- exp (- t(2).2 t 2 t dr

o .

Using the differential equation (38) this reduces to
dE

(
3 %2

)
a

(
,-r

)312

dr' = -. 2 t + i'i2 E +4 £(2 t:j:--62 . . . . (40)
From the definition of E(t), taking into account ~he properties of the potential

'.'. it follows that E(O) is finite. This condition suffices to determine the solution
of the differential equation (40) which runs

o

Substituting ,iu ~ %/2). and putting t = b~, we find

%a :13/2
(

i<2

)J'" dU exp (- ).2)

E(b2) = 4 Ii b6 exp 4b2_ (Jf+:' ;'ij.ib2)3iz'
i</2b

Finally, we substitute (o)~= ),2+ i<2/4b2 under the integral sign and insert the
values of a and b which follow from the relations (17) and (18), remembering that
%R = p. This gives, after partial integration,

Z2e2 - 5 1/2, 2 p2 J'" i
F = 2 :fa E(b2) = 1/2 -. ( ) I -

.
p exp (-.- ) d,,) e-(02_,

rR :If ( J' 5 5 ~
p/Jl5

which is the result (31).

The authors are indebted to G. A. Croes (Groningen) who carried
out some of the numerical calculations.
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